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ABSTRACT

We investigate the interaction of differential rotation and a misaligned magnetic field. The incompressible
magnetohydrodynamic equations are solved numerically for a free-decay problem. In the kinematic limit,
differential rotation annihilates the non-axisymmetric field on a timescale proportional to the cube root of magnetic
Reynolds number (Rm), as predicted by Rädler. Nonlinearly, the outcome depends upon the initial energy in the
non-axisymmetric part of the field. Sufficiently weak fields approach axisymmetry as in the kinematic limit; some
differential rotation survives across magnetic surfaces, at least on intermediate timescales. Stronger fields enforce
uniform rotation and remain non-axisymmetric. The initial field strength that divides these two regimes does not
follow the scaling Rm 1 3- predicted by quasi-kinematic arguments, perhaps because our Rm is never sufficiently
large or because of reconnection. We discuss the possible relevance of these results to tidal synchronization and
tidal heating of close binary stars, particularly double white dwarfs.
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1. INTRODUCTION

Current understanding of stellar differential rotation leaves
much to be desired. Centuries of sunspot observations show
that the Sun rotates more quickly than its equator. Helioseis-
mology reveals that this latitudinal variation extends through-
out the convection zone, but contrary to expectations for a
(nearly) isentropic region, the angular velocity is not constant
on cylinders (Schou et al. 1998). There is no consensus as to
how this pattern is maintained, though the convection itself is
presumably essential. Inversions for the radiative core are
consistent with uniform rotation down to at least R0.2 
(Chaplin et al. 1999); constraints at greater depth are weak
because they depend on a few low-degree p modes.
Asteroseismological analyses of Kepler photometry find that
many giants and subgiants have cores that rotate more rapidly
than their envelopes, but not so rapidly as if these cores had
contracted at constant angular momentum (Deheuvels
et al. 2012, 2014; Mosser et al. 2012). Magnetic transport of
angular momentum is likely responsible (Maeder & Mey-
net 2014), but standard prescriptions used by the stellar-
evolution community fail to explain the observations quantita-
tively (Eggenberger et al. 2012; Cantiello et al. 2014). White
dwarfs, the end states of low-mass stars, are known to rotate
slowly, with periods ranging from hours to days (Berger
et al. 2005; Kawaler 2014 and references therein). Asteroseis-
mological attempts to measure differential rotation in the
interiors of pulsating white dwarfs have so far produced
ambiguous results (Charpinet et al. 2009; Córsico et al. 2011).
The role of stellar magnetic fields in the transport of angular
momentum in all of these objects may be crucial but is not yet
well understood. The present work addresses one aspect of this
complex problem.

Ferraroʼs isorotation law applied to stellar interiors states that
“the star can possess a steady field only if the field is symmetric
about the axis of rotation, and each line of force lies wholly in a
surface symmetric about the axis and rotating with uniform
angular velocity” (Ferraro 1937). A detailed derivation can be
found in Cowling (1957). The theorem can be mathematically
expressed as B · 0p W = , where Bp is the axisymmetric

meridional field and Ω the angular velocity. This formula
shows that the contours of the axisymmetric meridional field
are parallel to the contours of angular velocity. The isorotation
law is strictly valid only for a perfect conductor, i.e., the
magnetic Reynolds number Rm  ¥. Later, Mestel & Weiss
(1987) studied the dynamical and resistive effects of departures
from the isorotation law. Their results suggest that Alfvén
waves transfer angular momentum along meridional field lines
—at different speeds on different lines—until the isorotation
law is achieved. This mechanism of “phase mixing” was
studied by Ionson (1978), Heyvaerts & Priest (1983), and
Spruit (1999). The latter estimated that the wave amplitude
should decay as e t t( )p

3- on a phase-mixing timescale
t R Va( )p

4 2 1 3h~ , R being stellar radius, η being magnetic
diffusivity, and Va being a typical Alfvén speed. Therefore, it
may be inferred that if all field lines are attached to a uniformly
rotating solid core, then the entire stellar (or planetary) interior
will eventually achieve solid-body rotation (e.g., Charbonneau
& MacGregor 1992). Mestel & Weiss (1987) suggested that,
even without such a core, a fluid body will tend toward solid-
body rotation if its magnetic field is significantly non-
axisymmetric: for example, a dipolar field whose axis is not
parallel to the rotation axis, a situation referred to in our paper
as an oblique rotator. It is this last assertion, rather than the
whole subject of stellar differential rotation, that is the main
focus of the present paper.
Mestel and Weiss perhaps overstated their argument by

restricting the velocity field to pure rotation, rather than a
combination of rotation and meridional circulation. Consider,
for example, a star in a nontrivial state of isorotation aligned
with its magnetic axis, but undergoing slow precession around
another axis (due, perhaps, to the tidal torque of a companion).
Such a star would not be strictly axisymmetric with respect to
the axis defined by its total angular momentum, but its velocity
field—which would have meridional as well as azimuthal
components with respect to that axis—could satisfy Ferraroʼs
Law and be steady in a frame rotating with the starʼs body axes.
The calculations described in this paper allow for meridional
motions.
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Even as Mestel and Weiss posed the problem, the outcome
surely depends on the relative strengths of the field and of
differential rotation. Rädler (1986) considered the kinematic
limit in which the backreaction of the magnetic field on the
flow is neglected, so that the field evolves initially linearly
according to the induction equation in a prescribed flow. He
concluded that the combined effects of differential rotation and
magnetic diffusion cause the non-axisymmetric field to decay
more rapidly than the axisymmetric field, thus tending to
reduce the magnetic obliquity. Allowing for magnetic forces,
Mestel (1999, Section 9.3) concluded that a non-axisymmetric
meridional field with a weak component perpendicular to the
rotational axis can be destroyed by differential rotation, but a
stronger perpendicular component can destroy the differential
rotation. The principal goal of the present paper is to test and
quantify these conclusions by explicit calculations.

The problem posed here has several applications in
geophysics and astrophysics. In many stars and fluid planets,
it will often be complicated by a magnetic dynamo, which may
reinforce the magnetic field in ways that cannot confidently be
predicted. We are motivated, however, mainly by applications
to white dwarfs, whose magnetic fields are probably relics
inherited from their progenitors. The interaction between
differential rotation and magnetic fields may therefore be
simpler to study in the context of white dwarfs than in main-
sequence or red-giant stars. Admittedly the observational
constraints are weaker in white dwarfs. On the other hand,
the consequences might be more dramatic, as we now explain.

In the double-degenerate scenario for Type Ia supernovae
(SNe Ia), two white dwarfs orbiting one another are gradually
driven together by gravitational radiation. At late phases of the
inspiral when the stars are separated by a modest multiple of
their radii, they will exert mutual tidal torques tending to enforce
synchronism between their rotational and orbital frequencies.
These torques, which likely involve resonant excitation of
inertial oscillations and internal waves (g-modes), are expected
to be unequally distributed within the star, in fact concentrated
toward the surface where thermal timescales are shortest,
densities are least, and tidally excited waves may break
nonlinearly (Fuller & Lai 2012; Burkart et al. 2013; Dall’Osso
& Rossi 2014), possibly with observable consequences (Fuller
& Lai 2013). When the star rotates rapidly compared to the tidal
frequency, i.e., when spin orbit spinW W - W , the torque is also
concentrated in latitude, toward the equator (Fuller & Lai 2014).
Magnetic stresses are likely needed to couple the rotation of
the stellar interior to that of the surface layers. The amount of
associated dissipation in the interior may depend not only on
the strength of the magnetic field and of the tide, but also on the
symmetry of the field. If it is essentially axisymmetric, then
since plasma viscosity is likely negligible, some turbulent
dissipation is probably required to transport angular momentum
across the lines.

Also, the efficiency of magnetic redistribution of angular
momentum may affect the degree of nonsynchronous rotation,
which, even if small, determines the total dissipation associated
with a given tidal torque. An upper bound to the tidal heating
rate is the power required to maintain synchronous rotation,
E I I˙ ( ) ˙

spin 1 2= + WW, where Ω is the orbital angular velocity
and I1,2 are the moments of inertia of the two stars. For two

M0.7  carbon–oxygen white dwarfs driven together by
gravitational radiation, E P˙ 10 erg sspin

38
min

14 3 1» - - , where Pmin

is the orbital period in minutes, while the time before contact is
P400 yearmin

8 3- . As noted in the works cited above, however, the
actual dissipation rate will be less than this by an appropriate
average of (1 )spin orb- W W , spinW being the rotational angular
velocity of each mass element (which differs among elements
if the star rotates differentially). Thus the dissipation will be
quite small if the tidal torques are efficiently redistributed so
that all parts of the star are kept nearly synchronous with the
orbit. The dissipation will also be small if the tidal torques are
weak so that ˙ ˙

spin orbW W . Still, if even a small fraction of Ėspin

were dissipated and the heat were transported to the surface,
such systems could be quite luminous.
Surface magnetic fields of white dwarfs vary widely.

Zeeman measurements indicate that 10%~ of these stars have
fields exceeding 2MG (Liebert et al. 2003), but sensitive
polarimetry (of admittedly small samples) suggests that the
majority have surface fields 10 kG (Landstreet et al. 2012).
In the expected absence of dynamo action, electrical con-
ductivities in the degenerate interiors of these stars are such that
their fields should decay on timescales 10 year9~ (Fontaine
et al. 1973). This is of the same order as the ages of most
observed white dwarfs and likely also of many SN Ia
progenitors. Depending upon the starʼs mass, crystallization
begins at the center after one to a few billion years when the
luminosity has fallen to 10 3- – L10 4-

 (Renedo et al. 2010).
Some field lines may be anchored to the growing solid core, an
effect not accounted for in the idealized models consid-
ered here.
The double-degenerate scenario for SNe Ia, though favored

by recent evidence, is unproven (Maoz et al. 2014). A variant
invokes merging via head-on collisions in a triple-star system
rather than inspiral driven by gravitational waves (Katz &
Dong 2012; Kushnir et al. 2013). Yet short-period white-dwarf
binaries do exist (Nelemans et al. 2004; Brown et al. 2011),
and their end states invite speculation even if they are not
destined to be supernovae.
The plan of this paper is as follows. Section 2 frames the

free-decay problem and our numerical methods. Section 3
compares results for the kinematic problem, in which the
differential rotation is prescribed and the backreaction of the
field neglected, with the predictions of Rädler (1986). Section 4
presents results for the full nonlinear problem, including
estimates for the critical initial field strength as a function of
Rm. Numerical considerations limit our calculations to
Re Rm 104= ⩽ , much less than in a real white dwarf. Finally,
Section 5 discusses the relationship of these numerical results
to the astrophysical problem that motivates this work. It is clear
that there are many aspects of the joint tidally driven evolution
of the magnetic field and differential rotation that will need
further study.

2. FORMULATION

We calculate the three-dimensional and fully nonlinear
unforced MHD equations in a spherical shell with inner radius
ri and outer radius ro. The differential rotation and misaligned
field are given as initial conditions. To conserve total angular
momentum, stress-free conditions are imposed on the fluid
velocity and insulating conditions on the magnetic field at both
boundaries.
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The dimensionless MHD equations for an incompressible
fluid of constant and uniform density read

u
u u u B B

t
p

Re
·

1
( ) , (1)2  ¶

¶
+ = - +  + ´ ´

B
u B B

t Rm
( )

1
. (2)2¶

¶
= ´ ´ + 

Length has been normalized to ro, time to 0
1W- , velocity to ro0W

where 0W is characteristic of the initial angular velocity (see
Equation (7)), pressure to ro0

2 2rW , and magnetic field to
ro0rmW . There are three dimensionless parameters governing

the MHD flow. The Reynolds number Re ro0
2 n= W , where ν

is kinematic viscosity, is the ratio of the viscous timescale to
the initial rotational timescale. Similarly, the magnetic
Reynolds number Rm ro0

2 h= W , where η is magnetic
diffusivity, is the timescale for diffusion of the initial magnetic
field relative to the rotation time. For numerical feasibility, we
keep Re Rm= , namely the magnetic Prandtl number Pm
is unity. The dimensionless Alfvén velocity Va =
B r( )o0 0rm W , where B0 is characteristic of the initial field
(see Equation (10)), measures the strength of initial field
relative to initial rotation. To minimize the effect of the inner
sphere while avoiding the coordinate singularity at the origin,
we take r r 0.1i 0 = .

The details of numerical method can be found in Hollerbach
(2000). Toroidal–poloidal decompositions are used to guaran-
tee u B· · 0 = = :

( ) ( )
( ) ( )

u e e

B e e

e f

g h

ˆ ˆ ,

ˆ ˆ . (3)

r r

r r

  

  

= ´ + ´ ´

= ´ + ´ ´

Note that the toroidal part ee( ˆ )r ´ has a latitudinal
component proportional to e f¶ ¶ , and that the poloidal part

ef( ˆ )r ´ ´ has an azimuthal component proportional to

f r2 f¶ ¶ ¶ . Therefore, when speaking of non-axisymmetric
fields, we will refer to components parallel to ef as azimuthal
(rather than toroidal), and to components parallel to the r–q
plane as meridional (rather than poloidal), to avoid confusion
caused by experience with axisymmetry, where “toroidal” is
synonymous with “azimuthal,” and “poloidal” with
“meridional.”

In spherical coordinates r( , , )q f the functions e f g h{ , , , }
are expanded in the angular coordinates with spherical
harmonics and in radius with Chebyshev polynomials. For
example,

[

]

e r t e r t P m

e r t P m

e r t e t T x e r t

e t T x

( , , , ) ( , ) (cos ) cos( )

( , ) (cos ) sin( ) ,

( , ) ( ) ( )and ( , )

( ) ( ), (4)

l m
lm
c

l
m

lm
s

l
m

lm
c

k
klm
c

k lm
s

k
klm
s

k

,
å

å

å

q f q f

q f

=

+

=

=

where x r r r r r(2 ) ( ) [ 1, 1]o i o i= - - - Î - + . We use a
second order Runge–Kutta scheme for time stepping. The
diffusive terms are treated implicitly.

We impose a stress-free boundary condition for fluid
velocity at both ro and ri, namely u 0r r rt t= = =q f .

Translated to spherical harmonics, this becomes

f
d

dr r

d

dr
f

d

dr r
e

1 1
0. (5)lm lm lm2 2

=
æ
è
ççç

ö
ø
÷÷÷ =

æ
è
ççç

ö
ø
÷÷÷ =

These hold for both cosine and sine components and so the
superscripts c and s are omitted. We require the field to match
onto potential fields interior to ri and exterior to ro that are
regular at r= 0 and r = ¥, respectively, so that

g
d

dr

l

r
h r

g
d

dr

l

r
h r

1
0 at ,

0 at . (6)

lm lm i

lm lm o

=
æ
è
ççç -

+ ö
ø
÷÷÷ =

=
æ
è
ççç +

ö
ø
÷÷÷ =

The initial differential rotation profile is taken for the
hydrostatic equilibrium, i.e., inertial force is balanced by
pressure gradient, such that the angular velocity depends only
on cylindrical radius R r sin q= ,

r sin . (7)0
2 2 qW = W

Nonmagnetic force balance with more general patterns of
differential rotation would require stratification, which we wish
to avoid. It seems unlikely that this simplification qualitatively
affects the competition between differential rotation and non-
axisymmetry, but it does restrict the allowable isorotational
states in case the former triumphs over the latter. A larger
exponent of R might better imitate the concentration of tidal
torques toward the surface and equator but would lead to rapid
magnetic and viscous diffusion at the numerically accessible
values of Re and Rm. Like this profile, the differential rotation
resulting from tidal torques in an inspiraling binary is probably
immune to magnetorotational instability because R 02¶W ¶ >
(e.g., Balbus 2003).
For the initial field we choose free-decay modes, eigenfunc-

tions of the induction equation with finite conductivity and
currents confined to the body (Moffatt 1978, Section 2.7). If
the conductivity is uniform, the poloidal expansion coefficients
obey

h

t

h

r

l l

r
h

( 1)
. (8)lm lm

lm

2

2 2

¶
¶

=
¶

¶
-

+

The eigenfunctions for hlm are linear combinations of
spherical Bessel functions of the first and second kind
that satisfy the insulating boundary condition (6). We choose
for the initial conditions a linear combination of the two
lowest-order poloidal free-decay modes l m( 1, 0)= = and
l m( 1, 1)= = :1

h r h r h r( ) ( )cos ( )sin , (9)10 11a a= +

1 These modes suffice to match onto a general dipole field in the vacuum
exterior to the star. In white dwarfs, modes with higher l and/or more radial
nodes would undergo significant resistive decay on Gyr timescales.
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in which α is the angle between the rotational and magnetic
axes. The initial field is then

[

( )

B B
r

h

h h

B B
r

dh

dr

dh

dr

dh

dr

B B
r

dh

dr

dh

dr

2
cos cos sin

cos sin sin ,

1
sin cos cos

cos sin sin ,

1
sin cos sin . (10)

r
c

c s

c

c s

c s

0 2 10

11 11

0
10

11 11

0
11 11

q a q

f f a

q a q

f f a

f f a

= -

´ + ù
û

= -
é

ë
ê
ê

+

´
æ

è
ççç

+
ö

ø
÷÷÷÷

ù

û
ú
ú

=
æ

è
ççç

-
ö

ø
÷÷÷÷

q

f

The normalization is chosen so that the initial magnetic energy
is Va r2

0
2

0
5rW , where r0

2
0
5rW is unity in our scaled units. The

initial field has a nonzero azimuthal component unless
sin 0a = . Figure 1(a) shows the meridional distributions of
initial angular velocity (black lines) and poloidal field (red
lines) and Figure 1(b) shows the three components of initial
field in the equatorial plane for 45a = .

With the boundary conditions, the total angular momentum
should be conserved, and with our initial conditions, it is purely
axial:

L r u dV r r

e r T x dx

sin
4

3
( )

( ) . (11)

z
V

o i

k
k
c

k10
1

1
2

ò

òå

q p= = -

´

f

-

+

The radial integral can be found analytically. In our numerical
calculations, ek

c
10 is monitored at each time step, and the total

angular momentum is found to be conserved to one part in 108.
For the initial rotation profile (7), L 0.9574z = in our units, and
the initial kinetic energy E 0.31910 = . Because of viscosity,
uniform (solid-body) rotation must eventually be established.
The final angular velocity and kinetic energy are

L I 0.5714zW = =¥ and E L I2 0.2736z
2= =¥ , where

I 1.676» is the moment of inertia of the fluid shell. Therefore,
the excess kinetic energy available for dissipation is
E E E0.0455 70 0- » »¥ . In Section 4, we compare the
times required for the magnetic and excess kinetic energies to

decay to 10% of their initial values, as functions of Rm Re=
and Va.

3. KINEMATIC PROBLEM

Before addressing the fully nonlinear problem, we study a
simplified kinematic one in which the flow is fixed in its initial
form (7), and only the magnetic induction Equation (2) is
solved. This is a linear problem and the spherical harmonics
decouple. Therefore, the axisymmetric and non-axisymmetric
fields evolve independently.
Rädler (1986)ʼs analysis applies here, and we summarize it.

Differential rotation shears the axisymmetric meridional field
into an axisymmetric azimuthal field—the so-called ω effect—
with the same dependence on r( , )q and therefore a constant
characteristic decay time t rd o

2 h= . However, if diffusion is
neglected, the non-axisymmetric field reverses on progressively
finer length scales as time goes on. Rädler demonstrates this
with a cartoon of a field line winding up in a plane, but the
point is important enough to us that we give a more careful
argument. In ideal MHD, advection by the velocity field

er r( , ) sin ˆq qW f preserves the meridional components
B B B( , )p rº q along the flow, as can be seen by considering
that any closed fluid contour drawn on a sphere r = constant
remains on the sphere and encloses constant area and constant
flux as it is advected; and similarly for any contour on a cone
q = constant. Therefore, if B r( , , )p

t( ) q f is the meridional field
at time t, then the evolution of this field and its derivatives is

B B

B B

B

B B

B

r r r t

r
r

r
r r t

t
r

r r t

r r r t

t r r t

( , , ) [ , , ( , ) ],

( , , ) [ , , ( , ) ]

[ , , ( , ) ],

( , , ) [ , , ( , ) ]

[ , , ( , ) ],

p
t

p

p
t

p

p

p
t

p

p

( ) (0)

( ) (0)

(0)

( ) (0)

(0)

q f q f q

q f q f q

f
q f q

q
q f

q
q f q

q f
q f q

= - W

¶
¶

=
¶
¶

- W

+
¶W
¶

¶
¶

- W

¶
¶

=
¶
¶

- W

+
¶W
¶

¶
¶

- W

from which it can be seen that the meridional derivatives Br p¶

and Bp¶q increase linearly with time unless B 0p
(0) f¶ ¶ =

(axisymmetry) or 0W = (solid-body rotation). Yet the first
line above implies that B dVp

t( ) 2ò ∣ ∣ is constant. Therefore, the

Figure 1. Initial conditions with magnetic obliquity 45a = . (a) Contours of initial axisymmetric angular velocity (black lines) and poloidal field (red lines) in the
meridional plane. (b) Contours of the components of initial field in the equatorial plane: Br, Bq, and Bf (left to right). In both (a) and (b), solid lines denote positive
and dashed negative.
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non-axisymmetric part of Bp
t( ) must reverse direction on

progressively smaller scales, as was to be shown. Finally,
since the meridional field is the source of the growing
azimuthal field via the term B ·p µ W in the induction

equation, the non-axisymmetric part of B t( )
f must also develop

such reversals.
Given a small diffusivity η, it follows that the resistive

timescale of the mth azimuthal harmonic decreases as
t m td m,

1 2 2 2h ~ W- - - -∣ ∣ at late times (m 0¹ ) where the

length scale is taken to be m t( ) 1W -∣ ∣ , i.e., the length scale of
shear t( ) 1W -∣ ∣ divided by number of polarity reversals m.
Once t td m,  , all components of the mth harmonic quickly
decay. Thus the toroidal field and magnetic energy will peak at
a time

( )
t

m m Rm m

Rm m

( ) ( ) 0,

( ) 0, (12)

peak

2 1 2 1 3 2 3 1 3 1

1

h 

~

ì
í
ïïï

î
ïïï

W º ¢ DW ¹

¢ DW =

- - - - -

-

where r0 rmsDW ~ W∣ ∣ is a measure of the differential

rotation, and Rm r0
2 h¢ º DW . The peak magnetic energy

density therefore scales as

E
Rm E m m

Rm E m

( ) 0,

( ) 0,
(13)mag,peak

2 3
mag,init

4 3

2
mag,init

~
ì
í
ïïï

î
ïïï

¢ ¹

¢ =

-

unless the m= 0 component of the field is isorotational.
Figure 2 shows the time evolution of total, axisymmetric,

and non-axisymmetric magnetic energy at different Rm with
Va 0.1= and 45a = . Initially, the axisymmetric azimuthal
magnetic field grows linearly with time and its energy grows
quadratically, but eventually all components of the field decay
resistively. The non-axisymmetric energy grows faster and
decays much faster than the axisymmetric energy. The peak
value of non-axisymmetric magnetic energy and the time at
which it is achieved are given in Table 1. These results can be
fit by t Rmpeak

0.323 0.004µ  and E Rmmag,peak
0.753 0.035µ  , in

rough agreement with Equations (12) and (13). The exponent
of the latter fit is influenced by behavior at small Rm; between
the two highest-Rm points, the logarithmic slope is 0.696. A

toy model that we will not go into here suggests that both
exponents can be expected to differ from their asymptotic
values as Rm  ¥ by corrections of relative size Rm 1 3~ - .
This explains the deviations of Emag,peak from its expected
asymptotic scaling rather well, leaving as a mystery why the
tpeak scaling does not deviate more than observed.

4. SELF-CONSISTENT MHD FLOW

We now study the fully nonlinear MHD flow by numerically
solving both (1) and (2). The importance of the magnetic
forces can be estimated by comparing the peak magnetic
energy (13) predicted kinematically to the energy available in
the shear flow: this ratio is Va Rm2 2 3~ for m= 1. Thus, if
Va Rm 1 3 - , the non-axisymmetric field can be expected to
act as a brake on the large-scale shear before it is annihilated by
diffusion (Spruit 1999). For Re Va Rm1 1 3- -  , the field
will be symmetrized but will eventually drive the flow toward
isorotation (in the sense of Ferraroʼs law) before viscosity
enforces solid-body rotation. Finally, if Va Re 1- , the
kinematic approximation should describe the flow reasonably
well at all times. All this presumes that the axisymmetric and
non-axisymmetric field strengths are initially comparable. The
effect of varying the misalignment angle α is described at the
end of this section. Unfortunately, numerical considerations
dictate that we adopt Re Rm= rather than Re Rm , so we
must use some care to distinguish magnetic from viscous
effects.
The influence of the non-axisymmetric field can also be

described as a form of phase mixing, but one that involves
azimuthal advection by the velocity field as well as Alfvénic
propagation along the lines. As in the axisymmetric case, fluid
elements on the same field line can exchange angular
momentum through magnetic tension, and differing rates of
propagation on neighboring lines leads to phase mixing and
damping of the associated Alfvén waves. But since the field is
non-axisymmetric, the projections of magnetic field lines onto
the meridional may intersect. Insofar as the velocity field
remains approximately axisymmetric and predominantly rota-
tional, the differential rotation may bring points on two such
lines arbitrarily close together, even though these points are
initally widely separated in azimuth. The combination of these
Alfvénic and advective processes may drive the entire volume
to a uniform angular velocity, provided that the non-
axisymmetric field persists.
First we study the magnetic backreaction by varying the

initial field strength. Figure 3 compares the time evolution of
magnetic energy in the kinematic problem with that of the self-
consistent MHD flow at different Va. Evidently, the latter
approaches the kinematic behavior at low Va. In the first panel,
the magnetic field is so strong (Va Rm0.1 0.061 3= > »- )
that it modifies the rotation profile significantly, as can be seen
in Figure 4(a). The peak magnetic energy of the self-consistent
solutions is limited by the excess kinetic energy available in the
initial differential rotation ( E 0.04550D » , Section 2).
Figure 4 shows the flow and field for the same simulation as

in the first panel of Figure 3 at the time when the non-
axisymmetric magnetic energy peaks, t 7.48= . The first panel
shows a large change in the pattern of differential rotation
compared to the initial state (Figure 1(a)). Meridional
circulation is induced, as shown in the right panel. The
winding-up of the field is evident in the plan views shown in
the last three panels.

Figure 2. Time evolution of total (solid), axisymmetric (dashed), and non-
axisymmetric (dash–dot) magnetic energy in the kinematic problem at
Va 0.1= and 45a = . Curves from bottom to top (colored black, red, blue,
green, cyan, and magenta) denote respectively Rm 500= , 1000, 2000, 5000,
10,000 and 20,000.
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Next we discuss the applicability of the isorotation law
B · 0p W = . The non-axisymmetric field alters the condi-
tions for isorotation. Suppose that u eR ˆ= W f and
B e eB Bˆ ˆR R z z= + in cylindrical coordinates R z( , , )f , and
that Rm  ¥ so that magnetic diffusion is ineffective. In
axisymmetry, the induction term u B( ) ´ ´ =

( )B eR · ˆp W f. If this vanishes, then B t 0¶ ¶ = , so that
isorotation can be maintained indefinitely, with different
angular velocities on different magnetic surfaces (surfaces
parallel to the field lines). When the field depends nontrivially
on the azimuthal coordinate (ϕ), however, the induction term
becomes

( )u B B e e eR
B B

( ) · ˆ ˆ ˆ .p
R

R
z

z
f f

 ´ ´ = W - W
æ

è
ççç
¶
¶

+
¶

¶

ö

ø
÷÷÷÷f

Even if B ·p W is initially zero, the second term on the right
side will cause Bp to evolve, so that additional constraints must
be satisfied by the initial state to maintain isorotation. It is
likely that there are very few if any non-axisymmetric
isorotational states other than solid-body rotation (Mestel &
Weiss 1987). Since the non-axisymmetric field decays much
faster than the axisymmetric field, however, it may be that
isorotation can be approached on intermediate timescales when
the field is substantially axisymmetric but viscosity has not yet
eliminated all shear in the velocities. Such intermediate states
are possible in the regime Re Va Rm1 1 3- -  . Figure 5
shows the contours of axisymmetric angular velocity and
poloidal field lines at Va 0.1= and 0.01: the former is outside
the regime in question, while the latter is within it. In each
subfigure the four panels are taken at intermediate times after
the peak of the non-axisymmetric magnetic energy (see upper-

left and bottom-right panels in Figure 3) but much earlier than
Re1W- . Figure 5(a) suggests that the isorotational state is

destroyed by the stronger field, while Figure 5(b) suggests that
it is nearly achieved for the weaker field in the deeper interior.
In the latter case, the angular velocity is nearly a function of
cylindrical radius alone, as required for steady unstratified flow
when magnetic and other non-potential forces are unimportant.
(Some dependence on z as well as R might have resulted if we
had allowed for stratification.) The magnetic field lines are
approximately parallel to the rotation axis at depth but not near
the surface. They resemble the shape of the slowest-decaying
resistive magnetic eigenfunction in a uniformly rotating and
uniformly conducting shell, especially near the equator
(Figure 1(a)).
Thirdly we compare the relative strength of differential

rotation and misaligned field. As pointed out by Mestel (1999,
Section 9.3), the degree of misalignment is crucial to the
dynamics. To quantify the relative strength we compare two
characteristic times. The first is the time when the excess
kinetic energy drops to 10% of its initial value. As noted in
Section 2, the kinetic energy decays from 0.3191 initially to
0.2736 in a state of uniform rotation at the same total angular
momentum; thus the reduction of the difference of these by
90% corresponds to kinetic energy = 0.2781. The second
characteristic time is that when the non-axisymmetric magnetic
energy drops to 10% of its peak (not initial) value. Table 2 lists
these two times for several Re Rm= and Va. In each column
higher Va corresponds to faster decay of kinetic energy and
slower decay of non-axisymmetric magnetic energy. A stronger
field tends to convert more kinetic energy to magnetic energy,
as already seen in Figure 3 and the surrounding discussion
above. More importantly, in the regime Va 0.03⩽ the time for
the 90% drop of kinetic energy is later than the time for the
90% drop of non-axisymmetric magnetic energy, whereas in
the regime Va 0.05⩾ the situation is reversed. Therefore, there
exists a boundary in the Rm Va( , ) plane across which the
dynamics is qualitatively changed. Below this boundary the
magnetic field is symmetrized before differential rotation
completely decays; above it, differential rotation is suppressed
before the magnetic field is symmetrized (if it is symmetrized at
all before it decays). This is consistent with the arguments of
Mestel (1999) and Spruit (1999).
To test these arguments more quantitatively, we have

interpolated in Va along each column of Table 2 to find the
value Vacrit at which the two times in question are equal. The
bottom row of Table 2 indicates that Vacrit is not a monotonic
function of Rm. A power-law fit to the final two columns (the
highest Rm) yields Va Rmcrit

0.20µ - , a somewhat weaker
dependence than the scaling Rm 1 3- predicted by the quasi-
kinematic reasoning at the beginning of this section. We return
to this point in Section 5 below.
To end this section, we briefly discuss the effect of varying

the angle α between the rotational and magnetic axes. Since, as
we have seen, there are strong differences between the

Table 1
Time to Reach the Peak of Non-axisymmetric Magnetic Energy and the Peak Value of that Energy for the Kinematic Calculations in Figure 2

Rm 500 1000 2000 5000 10000 20000

tpeak 6.5 8.2 10.3 13.8 17.2 21.5

Emag,peak 2.431 × 10–2 4.396 × 10–2 7.591 × 10–2 1.495 × 10–1 2.447 × 10–1 3.963 × 10–1

Figure 3. Time evolution of total (solid), axisymmetric (dashed) and non-
axisymmetric (dash–dot) magnetic energy in both the kinematic problem
(black) and self-consistent flow (red). Re Rm 5000= = and 45a = .
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axisymmetric cases (where 0a = ) and those for which
45a = , it is reasonable to expect that the strength of the

interaction between the flow and the field should increase
continuously with this angle up to 90a = . This expectation is
tested in Figure 6, which shows the evolution of the magnetic
energy and Ohmic dissipation for several values of α. A larger
angle leads to higher energy and dissipation, as expected. In
fact, for the cases shown in Figure 6 and tabulated in Table 3,
the peak of the non-axisymmetric energy increases linearly
with sin2 a (correlation coefficient 0.9999). This would not be
surprising in the kinematic problem, since the initial amplitude
of the non-axisymmetric component is proportional to sin a,
but the calculations shown in Figure 6 include magnetic
backreaction. Of course the energy Emag,peak (and somewhat
more, because dissipation has already begun to act at the time
of the peak) must come at the expense of the differential
rotation.

5. DISCUSSION

In this work we have explored numerically the interaction of
differential rotation and a misaligned magnetic field. In the
kinematic limit we verify the Rm1 3 law for the time and
amplitude at which the non-axisymmetric azimuthal field
reaches its peak and then decays, whereas the corresponding
scaling for the axisymmetric field is O Rm( ). In self-consistent
calculations where the flow reacts to magnetic forces, a
sufficiently weak magnetic field behaves approximately as in

the kinematic problem, becoming axisymmetric before the
rotation becomes uniform, and a nontrivial state of isorotation
—one in which different magnetic surfaces have different
angular velocities—is approximately achieved near the rotation
axis. For stronger fields, there exists a boundary in the plane of
dimensionless initial magnetic field strength Va versus Rm
above which differential rotation is suppressed before the non-
axisymmetric magnetic field decays. This boundary is better
described by Va Rmcrit

0.20µ - than by the expected scaling
Rm 1 3- , at least over the range explored by our simulations
(Rm 104⩽ ). We do not understand this quantitatively for our
actual simulations, though according to the arguments given
below, one expects the dependence of Vacrit on Rm to weaken
at very large Rm because of reconnection and perhaps other
nonlinear processes that assist in the destruction of the non-
axisymmetric field. We have also verified that a larger
misalignment angle (α) between the rotational and magnetic
axes leads to stronger exchanges between the flow and the
field, in proportion to sin2 a (Figure 6).
In our calculations the magnetic Prandtl number

Pm Rm Re n hº = has been fixed at unity for numerical
convenience. With the code and computational resources
available to us, fully resolved simulations are practical only if
the larger of Re and Rm is 104 . Therefore, we approach ideal
MHD best by taking Re Rm= . Direct numerical simulations of
magnetic dynamos (e.g., Schekochihin et al. 2007) and
magnetorotational turbulence (e.g., Fromang et al. 2007) often

Figure 4. Sequel to Figure 1 at the time when the non-axisymmetric magnetic energy peaks (t 7.48= ); Re Rm 5000= = , Va 0.1= and 45a = . (a) Contours of
axisymmetric angular velocity (left panel) and meridional circulation (right panel) in the meridional plane. (b) Contours of Br, Bq, and Bf in the equatorial plane. In
both (a) and (b), solid lines denote positive and dashed negative.
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find that Pm influences large-scale properties of the flow, at
least within the computationally accessible range of Re and Rm.
Whether Pm remains macroscopically important at much larger

Rm and Re, as in real stars and in the interstellar medium, can
only be addressed at present via idealized models of turbulence
(Kulsrud & Anderson 1992; Malyshkin & Boldyrev 2009;
Schober et al. 2012). It is worth noting, however, that in
comparison to Re and Rm themselves, Pm is not so far from
unity in the applications of interest to us. At r R0.5=  in the

Sun (where T 4 10 K6» ´ and 1.3 g cm 3r » - ), one esti-
mates from the classical Spitzer formulae that Pm 10 2» - . For
white-dwarf interiors at T 106~ –10 K7 and 10 g cm6 3r ~ - ,
we estimate2 Pm 102~ −103.
Another simplification we have made is to neglect stratifica-

tion, an important effect in the outer parts of white dwarfs, where
there are significant entropy and composition gradients, and in
the radiative zone of the Sun. As noted in Section 1, stratification

Figure 5. Contours of axisymmetric angular velocity (black lines) and magnetic field (red lines) in the meridional plane. Re Rm 5000= = and 45a = . (a)
Va 0.1= , (b) Va 0.01= . In both (a) and (b) the four panels from left to right are at time = 30, 40, 50, and 100.

Table 2
Times for 90% Drop in Energy

Re = Rm

Va 500 1000 2000 5000 10,000

0.01 20.6/17.9 39.5/20.2 75.0/23.9 159.4/31.1 258.8/38.2
0.02 19.8/18.1 36.5/20.5 64.1/24.2 115.6/31.6 185.9/38.9
0.03 18.4/18.4 32.0/21.0 50.7/25.1 72.5/32.3 60.4/38.7
0.04 16.5/18.9 26.3/21.7 35.3/26.0 34.2/32.7 30.2/45.0
0.05 14.4/19.5 20.0/22.9 21.8/27.0 23.9/33.4 25.4/47.0
0.1 8.5/21.3 9.8/26.2 11.8/31.0 19.3/37.0 K
K 0.0300 0.0461 0.0464 0.0414 0.0359

Note.The figure to the left of the slash is the time when the kinetic energy
drops 90% of its initial value and the figure to the right is the time when the
non-axisymmetric magnetic energy drops 90% of its peak value. The bottom
row is Vacrit. The calculation is done for five values of Re = Rm: that at
Re Rm 10,000= = and Va 0.1= was incompletely resolved.

2 Using the results of Yakovlev & Urpin (1980) as encoded in the FORTRAN

programs at www.ioffe.ru/astro/conduct, which return electrical and thermal
conductivities. We roughly translate the latter to a kinematic viscosity by
multiplying by m ki br, mi being the ion mass, presuming that the material has
not crystallized.
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would allow a larger range of isorotational final states in
hydrostatic equilibrium. The ratio of Brunt–Väsälä frequency to
rotation frequency (N W) is important for the growth rates of
magnetic instabilities that may gradually modify the differential
rotation as well as the field itself (Spruit 1999). However, we do
not expect that stratification has a major effect on the interaction
between a non-axisymmetric field and differential rotation (e.g.,
the dependence of Vacrit on Rm), at least on the dynamical
timescales simulated here. Nor have we allowed for compres-
sibility or density gradients. All of these could be the subject of
future work, perhaps based on realistic models of representative
stellar models.

Notwithstanding these caveats, we tentatively suggest some
implications for real stars. As discussed in Section 1, this work
has been motivated in part by tidal interactions between white
dwarfs in binary orbits decaying under the influence of
gravitational radiation. The calculations we have performed,
however, are not directly applicable to that astrophysical
problem. For one thing, the magnetic Reynolds number of a
white dwarf is enormous: Rm 1017~ for diffusivity

1 cm s2 1h » - (Yakovlev & Urpin 1980), radius
R R0.01 7 10 cm8» » ´ , and angular velocity

2 1minutepW = . Solar flares and other more theoretical
evidence suggest that under such nearly ideal conditions, the
destruction of magnetic energy proceeds more rapidly than by
linear resistive diffusion. It is plausible that nonlinear
dissipative processes are already important at the modest
values of Re and Rm 103~ in our simulations. This may
account for the difference between the predicted and observed
scalings of Vacrit with Rm. While a variety of collisionless-
plasma effects have been invoked to explain the observed rate
of magnetic energy release in solar flares, recent theoretical
work indicates that even in classical resistive MHD, oppositely
directed field lines may approach one another and annihilate at
a speed V fVrec A» that is independent of the true microscopic
diffusivity (η), provided that the Lundquist number
S LV 10A

4hº , where VA is the physical Alfvén speed

and L is an appropriate macroscopic length scale, such as the
length of the reconnecting current sheet; the present estimate
for the dimensionless factor is f 0.02» (Loureiro et al. 2012,
and references therein). Mechanisms by whichV Vrec A becomes
independent of η (or perhaps depends upon it only very
weakly) are said to provide “fast reconnection.”
In our problem, VA should be based on the tightly wound

azimuthal field, which scales with time t as V Va R tA ~ WDW
as explained in Section 3, while the length scale along field
lines is L r0~ . Thus S Va Rm~ ¢. The local timescale on
which the field is destroyed now becomes l Vrec rather than
l2 h, with l r t( )0~ DW being the cross-field length scale on
which the field reverses. Equating this local timescale to the
winding time t leads to a revised estimate of the time at which
the magnetic energy should reach its peak:

t fVa( )pk
1 3DW ~ W DW - rather than Rm 1 3- as before. Defin-

ingVacrit so that the magnetic energy at the peak is equal to the
excess kinetic energy ED in the initial differential rotation
leads to Va f E E( ) ( 5 )crit

1 2 2~ W DW D ¥ , where E L I2z
2=¥

is the final rotational energy, and the factor 1 5 arises from
I Mr 2 50

2 » as for a full sphere of mass M and constant
density. Finally, setting f 0.02» , 1DW W » , and

E E 1 6D »¥ yields Va 0.011crit » . In short, if we were able
to extend our calculations to Re Rm=  ¥ with the same
initial rotation profile and magnetic geometry, then we would
expect Vacrit to tend asymptotically to 10 2~ - because of fast
reconnection. It is unlikely that our simulations achieve fast
reconnection, however, because the Lundquist number at the
peak is

S Rm
Va

Rm
f

0.4pk

2 1 3

~
æ

è
çççç

DW
W

ö

ø
÷÷÷÷

~

where we have put Va 0.04= and 1DW W = in the final
estimate. Thus our largest-Rm simulations probably undergo
stable Sweet–Parker reconnection, for whichV Vrec A

1 2µ and an

argument along the lines above predicts Va Rmcrit
1 4µ - . In

Figure 6. Time evolution of magnetic energy (left panel) and Ohmic dissipation (right panel) at different magnetic obliquities. Re Rm 5000= = and Va 0.01= .
Black, red, blue, green, and cyan lines denote respectively 0a = , 30°, 45°, 60°, and 90°. Solid, dashed, and dash–dot lines denote respectively the total,
axisymmetric, and non-axisymmetric energy or dissipation ( 0a =  and 90a =  are entirely axisymmetric and non-axisymmetric, respectively).

Table 3
Peak Non-axisymmetric Magnetic Energy vs. Magnetic Obliquity α, Following Figure 6

α 0° 30° 45° 60° 90°

Emag,peak 0 7.019 × 10–4 1.387 × 10–3 2.057 × 10–3 2.711 × 10–3

Note. Re Rm 5000= = and Va 0.01.=
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astrophysical applications where S 104 , it is likely that fast
reconnection dominates so that Vacrit becomes independent
of Rm.

In an effort to cast doubt on contemporary helioseismolo-
gical evidence for differential rotation in the solar core, Mestel
& Weiss (1987) estimated that a meridional field B 0.03Gp >
would be sufficient to establish and maintain isorotation in the
radiative zone. They admitted that isorotation does not require
uniform rotation but went on to speculate that the latter would
result if the magnetic field were “even slightly non-axisym-
metric.” We are perhaps in a position to quantify this. From the
results of Figure 6 and surrounding discussion, Mestel and
Weissʼs estimate (of conditions sufficient to establish uniform
rotation) can be sharpened to B sin 0.03Gp a > , where α is the
magnetic obliquity. But this presumes that the differential
rotation does not symmetrize the field (reduce α to zero) before
solid-body rotation is established. If the field in the core is
frequently regenerated by a dynamo process, we know of no
way to constrain its obliquity. But if it is a fossil field
established in the early history of the Sun, then the free-decay
problem we have studied may apply. The magnetic Reynolds
number of the radiative zone is Rm R 10c

2 14hº W ~  , where
we take R R0.7c »  for the outer radius of this zone and
evaluate η for T 4 10 K6= ´ and 1.3g cm 3r = - (i.e.,
conditions at R0.5 ). If Va Rmcrit

1 3= - , then to avoid
symmetrization, the field and obliquity would have to satisfy
B 10Gp  , considerably stronger than the estimate above but
still quite modest. However, the Lundquist number Rc hW of
the radiative zone is on the order of B10 ( 1 G)8 , so according to
the discussion above, we expect to be in the regime of fast
reconnection where Vacrit becomes independent of Rm.
Adjusting the moment of inertia in the argument above for
the actual density profile of the solar core (Bahcall et al. 1995),
we estimate Va 0.004crit » , which corresponds to
B sin 2kGp a » . It is still debated whether a fossil magnetic
field in the solar radiative core can enforce solid-body rotation,
however. A crucial issue is whether such a field can remain
closed within the core, because if it were to connect to the
convection zone, then by Ferraroʼs Law the core also should
rotate differentially (Gough & McIntyre 1998; MacGregor &
Charbonneau 1999; Brun & Zahn 2006; Garaud & Gar-
aud 2008; Acevedo-Arreguin et al. 2013).

A second difference between our simulations and the binary-
white-dwarf problem is that we have studied the free decay of a
pre-existing profile of differential rotation rather than gradual
acceleration by a tidal torque. (This allowed the outcome to be
discerned with less CPU time.) In the tidal-binary scenario, the
system starts with an orbital period of a few hours, which is
short enough to lead to merging of a pair of M0.7  white
dwarfs within 10 year9 (Section 1). Assuming that the tidal
torque is absorbed in the outer layers of the star, the magnetic
stress necessary to maintain synchronous rotation of the interior
is

B B
I

R

d

dt

P
1

1 minute
MG ,r 3

11 3
2~

W
~

æ
è
ççç

ö
ø
÷÷÷f

-

in which I MR0.2 2» is the moment of inertia of a cool white-
dwarf model at this mass. Thus for example, if the meridional
field is 10 kG~ , a plausible upper limit for most white dwarfs,
then only a slight bending of the lines is needed to maintain

synchronism when the period is an hour or more. When the
period is about a minute, however, B B10 100 MGr

4~ ~f
would be required since differential rotation alone will not
increase Br. While this is not outside the range of surface fields
observed in some white dwarfs, a non-axisymmetric field so
tightly wound would have a resistive time 10 8~ - times smaller
than that of the most slowly decaying magnetic eigenmode
( 3 10 year9~ ´ ); and magnetic reconnection would probably
act on even shorter timescales, as discussed above. Hence an
axisymmetric field might be expected, unless perhaps dissipa-
tion in the interior leads to non-axisymmetric turbulence that
produces a magnetic dynamo. In fact, as Spruit (2002) has
emphasized, a predominantly azimuthal axisymmetric field
should be subject to non-axisymmetric Tayler instabilities,
though in strongly stably stratified regions these instabilities
will be concentrated toward the poles, whereas it is near the
equator that meridional field is most needed to transmit tidal
torques. Also, while some numerical evidence for such a
dynamo has been claimed by Braithwaite (2006), it is still
debated whether there exists dynamo action in stably stratified
zones (e.g., Zahn et al. 2007). If it exists, such a dynamo might
maintain Br in a constant ratio to Bf, allowing a lower overall
stress for the same torque. By our estimates, a radial field of
order 1 MG would also begin to have a significant effect on the
dispersion relation of g-modes at the compositional interface
where they are tidally excited in the models of Fuller &
Lai (2012).
In summary, while there is little doubt that the interactions

among tidal torques, differential rotation, and magnetic fields
are important for coalescing white-dwarf binaries, we are far
from being able to predict the tidal heating and luminosity of
such systems in the last stages of inspiral.
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