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Hollerbach and Rüdiger have reported a new type of magnetorotational instability �MRI� in magnetized
Taylor-Couette flow in the presence of combined axial and azimuthal magnetic fields. The salient advantage of
this “helical” MRI �HMRI� is that marginal instability occurs at arbitrarily low magnetic Reynolds and Lun-
dquist numbers, suggesting that HMRI might be easier to realize than standard MRI �axial field only�, and that
it might be relevant to cooler astrophysical disks, especially those around protostars, which may be quite
resistive. We confirm previous results for marginal stability and calculate HMRI growth rates. We show that in
the resistive limit, HMRI is a weakly destabilized inertial oscillation propagating in a unique direction along
the axis. But we report other features of HMRI that make it less attractive for experiments and for resistive
astrophysical disks. Large axial currents are required. More fundamentally, instability of highly resistive flow
is peculiar to infinitely long or periodic cylinders: finite cylinders with insulating endcaps are shown to be
stable in this limit, at least if viscosity is neglected. Also, Keplerian rotation profiles are stable in the resistive
limit regardless of axial boundary conditions. Nevertheless, the addition of a toroidal field lowers thresholds for
instability even in finite cylinders.
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I. INTRODUCTION

The magnetorotational instability �MRI� is probably the
main source of turbulence and accretion in sufficiently ion-
ized astrophysical disks �1�. MRI was first discovered theo-
retically �2–4�, then later supported numerically �5–7�, but
has never been directly observed in astronomy. No unam-
biguous laboratory study of MRI has been completed, not-
withstanding the claims of Sisan et al. �8�, whose experiment
proceeded from a background state that was not in MHD
equilibrium, nor Ref. �9� �see Sec. III�. We and others there-
fore have proposed experimental demonstrations of MRI
�10–12�. The experimental geometry planned by most groups
is a magnetized Taylor-Couette flow: an incompressible liq-
uid metal confined between concentric rotating cylinders,
with an imposed background magnetic field sustained by cur-
rents external to the fluid.

The challenge for experimentation, however, is that
liquid-metal flows are very far from ideal on laboratory
scales. While the fluid Reynolds number Re��1r1�r2

−r1� /� can be large, the corresponding magnetic Reynolds
number Rem��1r1�r2−r1� /� is modest or small because the
magnetic Prandtl number Prm�� /��10−5–10−6 in liquid
metals; here ��10−2 cm2 s−1 is the kinematic viscosity and
� is the magnetic diffusivity. Standard MRI modes will not
grow unless both the rotation period and the Alfvén crossing
time are shorter than the time scale for magnetic diffusion.
This requires both Rem�1 and S�1, where S�VA�r2

−r1� /� is the Lundquist number, and VA=B /��0	 is the
Alfvén speed. Therefore Re�106 and fields of several ki-
logauss must typically be achieved.

Recently, Hollerbach and collaborators have discovered
that MRI-like modes may grow at much reduced Rem and S
in the presence of a helical background field, a current-free
combination of axial and toroidal field �13,14�.

B�0� = Bz
�0��ez + 


r1

r
e�	 �1�

in cylindrical coordinates �r ,� ,z�, where Bz
�0� and 
 are con-

stants. �When it will not cause ambiguity, we will omit the
superscript �0� from B and Bz hereafter.� Henceforth, “stan-
dard MRI” �SMRI� will refer to cases where the 
=0, and
“helical MRI” �HMRI� to modes that require 
�0. In cen-
trifugally stable flows—meaning that d�r2��2 /dr�0, where
�=V�

�0� /r is the background angular velocity—SMRI exists
only when Rem and S exceed thresholds of order unity
�10,11�. Remarkably, however, HMRI may persist in such
flows even as both parameters tend to zero, though not inde-
pendently: more precisely, the thresholds are 
1 and would
vanish if the fluid were inviscid ��=0�. In a fixed geometry
and flow profile, the resistive limit may be approached theo-
retically by increasing � with all other parameters held con-
stant. The growth rate of inviscid HMRI is then ��−1 so that
the hydrodynamic case is approached continuously. The spe-
cial case of toroidal-only magnetic field �
=�� is stable
�15�.

Our own interest in HMRI stems as much from astro-
physical as from experimental considerations. Accretion
disks composed of substantially ionized plasma tend to be in
the ideal MHD limit: Rem�1 and S�1; also Prm�1. The
disks around protostars, in which planets form, are cool and
very weakly ionized, however. If their ionization fractions
followed thermal equilibrium, such disks would be far too
resistive for SMRI, but the actual resistivity is uncertain be-*Email address: wliu@pppl.gov
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cause it involves stellar x rays and other nonthermal sources
of ionization, as well as recombination rates that are sensi-
tive to the unknown abundance of small dust grains �16,17�.
The fluid Reynolds number of protostellar disks is in any
case very large, Re�1012, and therefore Prm is surely even
smaller than in liquid metals.

A feature of the background state for HMRI is that there
is a uniform axial flux of angular momentum carried by the
field, rT�z

�mag�=−rB�Bz /�0 and an associated axial Poynting
flux � times this. In an infinite or periodic cylinder, the
question of the sources and sinks of these axial fluxes need
not arise, but in an experimental device, a torque is exerted
by the axial field on the radial sections of the coil that com-
plete the circuit containing the axial current. Related to this
perhaps, the dispersion relation for linear modes is sensitive
to the sign of the axial wave number �kz�, and the instabilities
of axially infinite or periodic cylinders are traveling rather
than standing waves, as noted by Knobloch �18,19�. This
begs the question what should happen to the modes in finite
cylinders, a question that has motivated much of our analy-
sis.

Even the analysis for periodic cylinders implies two prac-
tical difficulties for an HMRI experiment. First, as will be
seen, the typical growth rates tend to be smaller than those of
SMRI except in regimes where SMRI would also be un-
stable. This is largely a consequence of looking for HMRI at
lower rotation rates; when normalized to the rotation rates of
the cylinders, the growth rates of HMRI and resistive SMRI
can be comparable. In practice, the ease with which growth
can be discerned probably depends less upon the ratio � /�
of growth rate to rotation rate than upon �tE, where tE is the
Ekman circulation time. Since �tE�Re−1/2, Ekman circula-
tion may be more problematic at the lower Reynolds num-
bers where HMRI is unstable but SMRI is not. A second
difficulty is the axial current needed for the required toroidal
fields tends to be quite large: I�kA�=5B�r�kG cm�. This is
partly offset by the low Re and Rem needed for HMRI, which
permits a radially compact apparatus. Despite these difficul-
ties, experimental verification of HMRI has already been
claimed in a recent paper �9�.

In Sec. II we analyze the linear stability of HMRI using
complementary approximations, some for infinite/periodic
cylinders and others for finite ones. The results are compared
with one another and with fully nonlinear axisymmetric
simulations. Our conclusions are summarized in Sec. III.

II. LINEAR THEORY

All magnetic fields are expressed as Alfvén speeds, in
other words, units such that �0=1/	 are used. Uppercase
letters are used for the background magnetic field �1� and
velocity V=r��r�e�, and lowercase �b ,v� for perturbations.
Frequently occurring derivatives are abbreviated by �r

†��r
+r−1, D��r�r

†+�z
2. Incompressibility allows the use of

stream functions for the poloidal components: vr=�z�, vz
=−�r

†�, br=�z�, bz=−�r
†�; note that these definitions differ

by factors of r from the usual ones. The linearized inviscid
MHD equations then become, since Bz and rB� are constant,

��t − �D�� = Bz�z� , �2�

��t − �D�b� = �z�2B�

r
� + Bzv� + r���	 , �3�

�tD� − 2��zv� = Bz�zD� −
2B�

r
�zb�, �4�

�tv� + r−1�r2����z� = Bz�zb�. �5�

The underlined terms above are negligible in the resistive
limit, where b scales ��−1 compared to v. Neglecting these
terms has been shown to suppress SMRI �11,20�, but not
HMRI as will be seen.

Taking another time derivative of Eq. �4� and eliminating
�tv� via Eq. �5� yields

��t
2D + �2�z

2�� = Bz�z�tD� + 2��Bz�z
2 −

B�

r
�z�t	b�, �6�

in which �2�r−3d�r2��2 /dr2 is the square of the epicyclic
frequency. As �→�, Eq. �6� reduces to

��r�r
† + �z

2��t
2� + �2�r��z

2� = 0. �7�

A. WKB for infinite or periodic cylinders

If we take the gap to be narrow, d�r2−r1
r, then it is
reasonable to treat r, Bz, �, r��=2 Ro �, and r−1�r2���
=2�1+Ro��=�2 /2� as constants, and to look for perturba-
tions �exp�ikrr+ ikzz− i�t�. The Rossby number Ro
� 1

2d ln � /d ln r has been introduced. In this case one ex-
pects to have WKB solutions with D replaced by −�kr

2+kz
2�

�K2, where the total wave number K=O�d−1�.
When applied to Eq. �7� �i.e., for �→�� these prescrip-

tions yield the dispersion relation for hydrodynamic inertial
oscillations �hereafter IO�,

�IO
2 = �2 kz

2

kr
2 + kz

2 where �2 =
1

r3

d

dr
�r2��2 = 4�1 + Ro��2.

�8�

IO exist only in the Rayleigh-stable regime �2�0, Ro�−1,
and their frequencies lie between 0 and �.

HMRI occurs at finite � when B� /r��� is comparable to
kzBz��z. Define ����K2 and ��kz / 
K
� �−1,1�. The dis-
persion relation corresponding to the system �2�–�5� is then

0 = s4 + 2��s3 + ���
2 + 4�2��

2 + 2�z
2 + �2�2�s2 + 2�2���2��

2

+ ���z
2 + ���2�2 − 4i�2���z��s + ���

2�2�2

− 4i�����z�
2��2 + Ro� + �z

4 + 4�2�z
2�2 Ro� , �9�

where the complex growth rate s�−i� has been used so that
the coefficients are all real except for those linear in ��. It is
instructive to consider the limit in which �� is much larger
than all of the other frequencies, including �:

s2 + �IO
2 + 2��

−1�s3 + �2�2��
2 + �z

2 + �IO
2 �s

− 2i���z�
2��2 + Ro�� � O���

−2� . �10�

The replacement �2�2→�IO
2 emphasizes that �� ±�IO in

this limit. The roots are
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� � � �IO + i��
−1�±2���z�IO

−1�2��2 + Ro� − �2�2��
2 + �z

2��

+ O���
−2� , �11�

the bivalent signs being correlated. The other two roots of
Eq. �9� represent rapidly decaying magnetic perturbations,
s�−��.

We conclude that in highly resistive flow, HMRI reduces
to a weakly destabilized inertial oscillation. In the present
inviscid approximation, instability persists to arbitrarily large
resistivity, though with reduced growth rate. Furthermore, we
note from Eq. �11� that instability �i.e., Im����0� occurs
only if the bivalent signs are chosen so that
�B�Bzkz /Re����0, which implies that the unstable mode
propagates axially with the same sense as the background
Poynting flux. �From Eq. �8�, the group velocity �Re��� /�kz

and phase velocity Re��� /kz have the same sign.� Although
we have derived this propagation rule in the resistive limit,
numerical evidence indicates that it is true of the full disper-
sion relation �9�, as demonstrated by Figure. 1.

Instability requires the square brackets in Eq. �11� to be
positive, whence

2�����2 ±
2 + Ro
�1 + Ro

�z����� + �z
2 � 0.

The inequality is possible if and only if the discriminant of
the left-hand side, regarded as a quadratic equation in ���, is
positive:

�2 + Ro�2

1 + Ro
�z

2 − 8�z
2 � 0,

which translates to

Ro � 2�1 − �2� � − 0.8284 or Ro � 2�1 + �2� � 4.8284.

�12�

Thus, within WKB, at least for highly resistive but inviscid
flow �Rem, S→0+, Re→��, the Keplerian value Ro=−3/4 is
excluded, as of course is uniform rotation �Ro=0��. We say
“of course” because, the background being current free, the
only source of free energy is the shear.

B. Numerical results for wide gaps in periodic cylinders

We have adapted a code developed by �11� to allow for a
helical field. Vertical periodicity is assumed, but the radial
equations are solved directly by finite differences with per-
fectly conducting boundary conditions. The underlined terms
in Eqs. �2�–�5� are retained, and viscous terms are added
although their influence is small at Reynolds numbers of
interest. The code reproduces published results for marginal
stability �14,13�. Table I compares the predictions of the
WKB dispersion relation �9� with those of this code �labeled
“Global”�. The agreement is reasonably good, considering
the crudeness of the WKB approximation. No unstable
modes are found for the parameters of Fig. 1 at Ro�r1�
�−0.80: the Keplerian value Ro=−0.75 is stable.

Astrophysical disks correspond to very wide gaps, r2−r1
�h, as well as Keplerian rotation. Given �Rem,S�

= �0.1,0.03� and r2 /r1=2.0, 2.83, and 5.0, the maximum un-
stable Rossby numbers at the inner cylinder are found to be
Ro�r1�=−0.88, −0.92, and −0.95, respectively, from our ra-
dially global linear code. We conjecture that Keplerian
flows—more precisely, flows in which 0�Ro�−3/4 at all
radii—are stable for all gap widths. It would be interesting to
prove this.

We have also estimated a few growth rates with our non-
linear, compressible nonideal MHD code �21�, which is a
modified version of the astrophysical code ZEUS2D �22�. In
this case, we use the wide-gap geometry of the Princeton
MRI experiment �10,11�, except that the computation uses
periodic vertical boundaries: r1=7.1 cm, r2=20.3 cm, h
=27.9 cm, �1=400 rpm, �2=53.3 rpm, Bz=500 G, and
B��r1�=1 kG; the material properties are again based on gal-
lium: ��2000 cm2 s−1, ��3�10−3 cm2 s−1. The growth
rate and real frequency from the ZEUS2D simulations are,
respectively, 1.06 and 3.93 s−1, compared to 1.05 and
3.89 s−1 from the linear code. WKB yields �� ,�r�

FIG. 1. Selected roots of full dispersion relation �9� for �
=2000 cm2 s−1 �gallium�, r1=9 cm, r2=11 cm, vertical periodicity
2h=16 cm, �1=100 rpm, �2=68.1 rpm, Bz=500 G, B�=10 kG at
r= �r1+r2� /2. The two rapidly damped modes are omitted. �a�
Growth rate �=Im� vs. wave number kz �b� Real frequency �r

=Re� vs. wave Number kz
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= �0.41,3.90�s−1, not an accurate result for the growth rate,
but considering the width of the gap, the agreement is pleas-
ing.

The growth rates in Table I are of order 1 s−1, as com-
pared to �30 s−1 for SMRI in this geometry at the full rota-
tion rate and field planned for the Princeton experiment �21�:
�1=4000 rpm, �2=533 rpm, Bz=5 kG, and B�=0.

C. Finite cylinders: A perturbative approach

In finite nonperiodic cylinders with insulating or partially
insulating endcaps, the MHD eigenfunctions are intrinsically
two dimensional: they are not separable in r and z. �Separa-
bility could be achieved with perfectly conducting endcaps,
but then the axial field would be attached to them. This
would allow the boundary to exert magnetic forces on the
fluid, which seems undesirable and in any case is experimen-
tally less realistic than insulating endcaps.� The purely hy-
drodynamic problem for �=� is separable, however, if vis-
cosity is neglected so that we may assume no-slip boundary
conditions. This suggests a perturbative expansion of the ei-
genvalue problem in �−1—more properly, �Rem,S�
→ �� Rem,�S�, with � a small parameter. The cylinders them-
selves are assumed infinitely long and perfectly conducting;
although this is not realistic, it does not result in any attach-
ment of the field to the boundaries, and it allows the mag-
netic field more easily to be matched onto vacuum solutions
that decay as 
z 
 →� in the regions above and below the
fluid. The underlined terms in Eq. �2�–�5� will be neglected
because they contribute to the eigenfrequency only at O��−2�
and higher orders.

We begin with the zeroth-order problem, i.e., for �=�. As
noted above, the hydrodynamic boundary conditions

� = 0 on r = r1,r2 and on z = 0,h , �13�

and inertial-mode equation �7� are separable, so we look for
an eigenmode of the form

��t,r,z� = e−i�t��r�sin kz, k = n
�

h
� kn. �14�

The radial function ��r� satisfies

d2�

dr2 +
1

r

d�

dr
+ �k2�4a2

�2 − 1	 +
1

r2�4abk2

�2 − 1	
� = 0,

�15�

assuming a Couette profile ��r�=a+br−2 so that �2=4a�,
which is satisfied by the Bessel functions J��pr� and Y��pr�
if

�2 � 1 −
4abk2

�2 , p2 � k2�4a2

�2 − 1	 . �16�

We may thus solve this problem exactly. However, for quali-
tative information, we notice that if we multiply Eq. �15� by
r it becomes

d

dr
�r

d�

dr
	 + � 1

�2�4a2k2r +
4abk2

r
	 − �1

r
+ k2r	
� = 0.

This is the same form as the Sturm-Liouville problem

d

dr
�P�r�

d�

dr
	 + ��R�r� − Q�r��� = 0,

��r1� = 0, ��r2� = 0,

where

P�r� = r ,

R�r� = 4a2k2r +
4abk2

r
� 0,

Q�r� = k2r +
1

r
� 0,

� = 1/�2.

Therefore � is real and positive ��23�, Chap. X�; conse-
quently the frequencies � which we seek are all real. Fur-
thermore, �R−Q must be positive somewhere within the
flow, whence �2�max�4a��r� / �1+k−2r−2��. There are no
modes which grow in time. Thus we conclude that, all invis-
cid axisymmetric modes are neutrally stable in the limit of
infinite resistivity. The coefficient R�r�=��r�, the Rayleigh
discriminant, so this result is to be expected.

We may arrange for ��r1�=0 by taking

�mn�r� � J��pr1�Y��pr� − Y��pr1�J��pr� . �17�

Since we also require ��r2�=0, the determinant

���,k� � J��pr1�Y��pr2� − J��pr2�Y��pr1� �18�

must vanish. The condition �=0 defines a discrete set of
eigenfrequencies �1,n��2,n� ¯ ��mn¯ �0 for each k
=kn. Let �m,n be the complete eigenfunction �14� corre-
sponding to a given kn and �m,n. We define an inner product

TABLE I. Comparison between WKB and numerical growth
rates in a vertically periodic Couette flow with the parameters of
Fig. 1 except for a nonzero viscosity like that of gallium: �=3.1
�10−3. The mode number n�kzh /�.

n
WKB �

�s−1�
WKB �r

�s−1�
Global �

�s−1�
Global �r

�s−1�

1 0.1612 0.9443 0.0965 1.4004

2 0.3911 1.9182 0.3465 2.5164

3 0.5878 2.7084 0.6031 3.2638

4 0.7387 3.2646 0.7907 3.7094

5 0.8356 3.6221 0.8960 3.9549

6 0.8805 3.8366 0.9339 4.0799

7 0.8829 3.9565 0.9241 4.1352

8 0.8543 4.0166 0.8831 4.1512

9 0.8049 4.0400 0.8227 4.1451
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�here �mn is defined by Eq. �14� with ��r�→�mn�r��

��m�n�,�mn� � �
0

h

dz�
r1

r2

rdr�̄m�n��mn, �19�

where the overbar denotes complex conjugation. The eigen-
functions are orthogonal in the sense that ��mn ,�2�m�n��=0
if �mn

2 ��m�n�
2 .

To get the O��−1� corrections to �mn, we must express the
magnetic perturbations � and b� appearing on the right-hand
of Eq. �6� in terms of the zeroth-order eigenfunctions �mn.
Neglecting the time derivative in Eq. �2� yields

D� = − �−1Bz�z�mn. �20�

To get b� from Eq. �3�, we first use Eq. �5� to write v�

��2a / i�mn��z�mn, so that

b� � − 2�−1DT
−1�B�

r
�z�mn +

iaBzkn
2

�mn
�mn	 . �21�

. Note that we have replaced �z
2 with −kn

2; we may similarly
replace any even power of �z but not an odd power, which
changes a sin knz to a multiple of cos knz. The operator DT

−1 is
the inverse of D with the boundary conditions appropriate to
b�, which are different from those of � �Eq. �13��:

�r
†b� = 0 at r = r1,r2 and b� = 0 at z = 0,h . �22�

Using Eqs. �20� and �21� to eliminate D� and b� from Eq. �6�
results in

��t
2D + �2�z

2�� = − i�mn�−1��knBz�2 + 4�− iB�

r
�z +

�Bzkn
2

�mn
	

��− DT
−1��− iB�

r
�z +

aBzkn
2

�mn
	
�mn. �23�

On the right-hand side of Eq. �23�, the eigenmode and
eigenfrequency have been evaluated to zeroth order in �−1.
On the left-hand side, we must consider that �→�mn+ �
and �→�mn+ �, where  � and  � are of first order in �−1.
We may obtain an expression for  � by taking the inner
product of Eq. �23� with �mn and replacing i�t→�mn+ � on
the left-hand side. The single term involving  � at O��−1� is
��mn , ��2−�mn

2 D� ��, and this vanishes upon integration by
parts. On the right side, it is convenient to define the self-
adjoint operator

H � 2�−
B�

r
i�z +

aBzkn
2

�mn
	 = H†. �24�

At last, then,

− ��mn,D�mn� �

= −
i

2�
��knBz�2��mn,�mn� − �H�mn,DT

−1H�mn�

−
2bBzkn

2

�mn
��mn,r−2DT

−1H�mn�
 . �25�

Now D and DT
−1 are negative-definite operators. Therefore

the only term that can make a positive contribution to the
growth rate Im� �� is the last term on the right-hand side,
and specifically the part of H involving B��z since ab�0.

To evaluate  � from Eq. �25�, we need explicit expres-
sions for D and DT

−1. The first is easy enough: it follows from
Eq. �7� that D�mn=−�kn

2�2�r� /�mn
2 ��mn. For DT

−1, we con-
struct the eigenfunctions of D with the boundary conditions
�22�:

D! jn�r,z� = − �qj
2 + kn

2�! jn�r,z� , �26�

! jn�r,z� � Rjn�r�sin knz, kn = n
�

h
, �27�

where

Rjn = �J0�qjr1�Y1�qjr� − Y0�qjr1�J1�qjr� if qj � 0;

r−1 if q0 = 0;
�
�28�

and qj satisfies J0�qjr1�Y0�qjr2� − Y0�qjr1�J0�qjr2� � 0.

�29�

When applied to ! jn, DT
−1→ �qj

2+kn
2�−1. An arbitrary function

f�r ,z� can be expanded in these eigenfunctions, so that

DT
−1f�r,z� = − �

n
�

j

�qj
2 + kn

2�−1 �! jn, f�
�! jn,! jn�

! jn�r,z� . �30�

The important point is that DT
−1 turns a function proportional

to sin knz into another such function. Therefore
��mn ,DT

−1�z�mn�=0, and so the part of H involving r−1B�i�z

does not contribute to the expression �25� for the first-order
eigenfrequency. This, however, was the only term that might
have made for a positive growth rate. We conclude that at
O��−1�, HMRI does not grow in finite cylinders with insulat-
ing endcaps.

The same perturbative method could have been used for
periodic vertical boundary conditions; �mn and ! jn would
have involved exp�ikzz� instead of sin knz. The term involv-
ing r−1B�i�z in Eq. �25� would then have contributed to the
growth rate with the same sign as −�kz /�mn��B�Bz. Evalu-
ating this term, we conclude that in highly resistive periodic
flows, �i� unstable modes propagate axially in the direction
of the background Poynting flux—as found in WKB; and �ii�
the instability occurs only if 
�akzr /�mn somewhere within
the gap. Given the upper bound on �mn

2 noted above, it fol-
lows that 
2�min�4a /��r��.

We have written MATLAB procedures to evaluate Eq. �25�.
The results confirm our conclusions above. When periodic
boundary conditions are used, the perturbative result matches
the growth rate found from our radially global linear code to
three digits in sufficiently resistive cases: e.g., �=1.89
�10−3�1 in the Princeton geometry with Rem=0.1,
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S=0.043, �2 /�1=0.1325, and 
=2. But when insulating
endcaps are imposed, the perturbative estimate of the growth
rate is always negative.

D. Finite cylinders: Two other approaches

Here we analyze finite cylinders by approximations that
do not require large resistivity: by a variant of WKB and by
direct axisymmetric numerical simulations.

In the modified WKB approach, perturbations are again
assumed to vary as exp�ikr+st� with a common complex
growth rate s�−i� and radial wave number kr=� / �r2−r1�,
but the vertical dependence is treated differently. With the t
and r dependence factored out, the linearized equations of
motion reduce to homogeneous ordinary differential equa-
tions with coefficients independent of z. Elementary solu-
tions of these equations exist with exponential dependence
on z; however, since the vertical boundaries are not transla-
tionally invariant, the wave number kz need not be real, and
growing modes can be linear combinations of the elementary
exponential solutions with the same � but different kz. The
vertical magnetic boundary conditions require the fields to
match onto a vacuum solution that decays exponentially as

z
→� in the space r1"r"r2 between the extended con-
ducting cylinders:

z = 0: � = b� = 0, �z� = 
kr
�;

z = h: � = b� = 0, �z� = − 
kr
� . �31�

We search iteratively for such modes as follows. Given a
trial value for s, the dispersion relation �9� has six roots—in
general complex—for the vertical wave number, which can
be regarded as algebraic functions of the growth rate:
�kz,#�s��, #� �1, . . . ,6�. We seek a mode in the finite cylinder
of the form

q�t,r,z� � ��,v�,�,b��T = est+ikrr�
#=1

6

Y#q# exp�ikz,#z� .

�32�

Each term in the sum above is the elementary solution cor-
responding to a particular root kz,#�s�, with q# a four-
component column vector; these elementary solutions are su-
perposed with constant weights �Y#�. Substitution into the
boundary conditions �31� yields a sixth-order homogeneous
linear system for the �Y#�. Nontrivial solutions exist only if
the determinant D�s� of this system vanishes. The equation
D�s�=0 is transcendental and we cannot solve it analytically,
but a numerical nonlinear zero-finding algorithm recovers
the roots for s.

We have checked this procedure by replacing Eq. �31�
with periodic boundary conditions and comparing the results
with direct solutions of the dispersion relation �9�. Also, we
find reasonably good agreement with growth rates deter-
mined from ZEUS2D simulations of a narrow-gap configura-
tion with insulating boundaries �see below�. However, for
sufficiently large resistivity, no roots with positive Re�s� are
found, in agreement with the perturbative results of Sec. II C.

For the ZEUS2D simulations, we represent the poloidal
magnetic field at z"0 and z�h by flux functions �±�r ,z�
satisfying brer+bzez=r−1e���� and ��b=0. The latter
implies r�r�r−1�r��+�z

2�=0, which is solvable by separation
of variables since we require �=0 on the vertically extended
conducting cylinders. The elementary solutions are

�k�r,z� � re−k
z−z0
�Y1�kr1�J1�kr� − J1�kr1�Y1�kr�� ,

for an infinite discrete set of non-negative values of k deter-
mined by �k�r2 ,z�=0. At each endcap, we match the vertical
field bz protruding from the fluid with a superposition of
vacuum solutions of this form, and thereby obtain a bound-
ary condition relating bz and br. Of course b�=0 at these
boundaries since the current along the axis is constant.

We have performed simulations with insulating endcaps
for the parameters of Fig. 1. We find a complex growth rate
s�0.51+4.18i s−1, as compared to s�0.37+3.68i s−1 from
the modified WKB approach �31� and �32� above. Consider-
ing the approximate nature of the latter approach, the agree-
ment is satisfactory. We have also carried out ZEUS2D simu-
lations with insulating endcaps in the wide-gap experimental
geometry ��r1 ,r2 ,h�= �7.1,20.3,28� cm�. Here we find a
growth rate �0.27 s−1, as opposed to �1.06 s−1 with peri-
odic boundaries. We conclude that insulating endcaps lower
the growth rate, even in flows of moderate �Rem,S�.

A limitation of our direct simulations is that since we use
explicit time stepping, we cannot explore very large resistiv-
ities �21�. The modified WKB approach does not suffer from
any restriction on �, but it is not trustworthy for wide gaps.
The concordance between the two approaches where both
are applicable—namely for narrow gaps and moderate
�Rem,S�—inclines us to trust results obtained from one of
these approaches in regimes where the other is not appli-
cable. In particular, the modified WKB method predicts that
highly resistive flows are completely stable in finite cylin-
ders, at least for narrow gaps. The perturbative analysis of
Sec. II C reaches the same conclusion for gaps of any width,
but that analysis is valid at O��−1� only.

III. DISCUSSION AND CONCLUSIONS

We have analyzed the linear development of helical mag-
netorotational instability in a nonideal magnetohydrody-
namic Taylor-Couette flow, paying particular attention to the
effects of the axial boundary conditions. A number of
complementary approximations and numerical methods have
been used.

For infinitely long or periodic cylinders, we confirm that
there is an axisymmetric MHD instability that persists to
smaller magnetic Reynolds number and Lundquist number in
the presence of both axial and toroidal background magnetic
field than the standard MRI that exists for axial field alone.
The mode is an overstability and propagates axially in the
direction of the background Poynting flux −r�B�Bz /�0. In
highly resistive flows, the mode is a weakly destabilized hy-
drodynamic inertial oscillation. Growth depends also on the
ratio of shear to rotation, i.e., Rossby number: for all aspect
ratios r2 /r1 that we have explored, and certainly for narrow
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gaps, the Keplerian Rossby number is stable.
We have also considered finite cylinders with insulating

endcaps, which are closer to experimental reality but which
do not permit traveling modes that propagate indefinitely
along the axis. Astrophysical disks also have limited vertical
thickness. These boundary conditions reduce the growth rate
of the helical mode and stabilize highly resistive flows en-
tirely, at least in the absence of viscosity and viscous
boundary-layer effects.

Here some comments are in order regarding a recent pa-
per that claims to have observed HMRI in the Potsdam
PROMISE experiment �9�. It is reported that when the axial
current lay in the range where HMRI was expected �based on
an analysis of infinite cylinders�, persistent fluctuations were
measured by ultrasonic velocimetry that appeared to form
axially traveling waves, consistent with expectations for
HMRI.

These claims do not necessarily contradict our analysis.
An exponential growth rate has not been reported, which
would have been a clear signature of a discrete linear un-
stable mode. Rather than a global instability, we suspect that
the observed fluctuations represent excitation by processes
outside our inviscid analysis, followed by transient magnetic
amplification as the disturbances propagate along the axis.
This is what one might expect, given an appropriate source
of excitation, when the local WKB dispersion relation pre-
dicts instability but the boundary conditions are not compat-
ible with a global mode. Data given in �9� clearly show vi-
brations at the rotation frequencies of the cylinders
themselves; these or other experimental imperfections might
have excited the waves, although the peaks in the temporal
power spectrum attributed to the waves appear to be broader
than those at the cylinder frequencies and are distinct from
them. Further evidence that may bear on the excitation
mechanism comes from another recent publication �24�,
which reports numerical axisymmetric simulations for pa-
rameters approximating the experiment but for both axially
infinite �actually periodic� and finite cylinders. External vi-
brations, roughness, and magnetic interaction with the
boundary need not exist in the simulations, but since no-slip

conditions are applied at the endcaps, which rotate as in the
experiment, viscous boundary layers should exist in the finite
cylinders. In �24�, a clear vertically traveling mode is seen in
the infinite cylinders, but in the finite ones, the velocity fluc-
tuations, though sustained, appear to be unsteady and to have
a fluctuating spatial pattern. At the Reynolds numbers where
these fluctuations were reported, Re�900, Ekman circula-
tion in purely hydrodynamic simulations by �25� was also
unsteady.

The above speculations aside, the fact remains that the
inviscid analyses of the present paper do not apply to situa-
tions where viscosity may be important, as they probably are
in the PROMISE experiment. Viscous effects must be in-
cluded to model such experiments reliably. On the other
hand, viscous boundary layers lead to an exchange of angu-
lar momentum between the fluid and its container. Such ex-
changes are not expected to be important in astrophysical
disks, so it may be appropriate to neglect viscosity when one
is interested in astrophysically important modes.

Thus the relevance of HMRI to astrophysical disks is
questionable, although it may be relevant to stellar interiors
and jets, where the magnetic geometry and the Rossby num-
ber may be more favorable. Also, HMRI may have theoreti-
cal significance that goes beyond its direct applications. It is
not understood why linearly and axisymmetrically stable ro-
tating flows are often also nonlinearly and nonaxisymmetri-
cally unstable, especially since subcritical transition does oc-
cur at some Rossby numbers �26�. The fact that even a very
poorly coupled magnetic field can sometimes linearly desta-
bilize such flows hints that it might also affect nonlinear
transition.
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