J. Fluid Mech. (2002), vol. 462, pp. 365-382. (© 2002 Cambridge University Press 365
DOI: 10.1017/S0022112002008704  Printed in the United Kingdom

Magnetorotational instability of dissipative
Couette flow

By JEREMY GOODMAN! AND HANTAO JI?

"Princeton University Observatory, Princeton, NJ 08544, USA

2Princeton Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton,
NJ 08543, USA

(Received 19 April 2001 and in revised form 21 January 2002)

Axisymmetric stability of viscous resistive magnetized Couette flow is re-examined,
with the emphasis on flows that would be hydrodynamically stable according to
Rayleigh’s criterion: opposing gradients of angular velocity and specific angular
momentum. In this regime, magnetorotational instabilities (MRI) may occur. Previous
work has focused on the Rayleigh-unstable regime. To prepare for an experimental
study of MRI, which is of intense astrophysical interest, we solve for global linear
modes in a wide gap with realistic dissipation coefficients. Exchange of stability
appears to occur through marginal modes. Velocity eigenfunctions of marginal modes
are nearly singular at conducting boundaries, but magnetic eigenfunctions are smooth
and obey a fourth-order differential equation in the inviscid limit. The viscous marginal
system is of tenth order; an eighth-order approximation previously used for Rayleigh-
unstable modes does not permit MRI. Peak growth rates are insensitive to boundary
conditions. They are predicted with surprising accuracy by WK B methods even for the
largest-scale mode. We conclude that MRI is achievable under plausible experimental
conditions using easy-to-handle liquid metals such as gallium.

1. Introduction

To an even greater extent than large-scale terrestrial flows, astrophysical
flows are nearly inviscid. Yet observations show that they dissipate efficiently. For
example, accretion disks (flattened systems of gas in orbit about a star or black
hole) must lose orbital energy in order that the gas flow onto the central object.
Shear-driven turbulence has long been implicated, but purely hydrodynamic turbu-
lence is probably ineffective because of the strongly stable radial angular momentum
gradient in the disk. When warm enough to be partially ionized, as they often
are, accretion disks become magnetohydrodynamic (MHD) fluids. It is now be-
lieved that turbulence and orbital decay are driven by magnetorotational instabilities
(MRI).

Although discovered by Velikhov (1959) and Chandrasekhar (1960), MRI did not
come to the attention of the astrophysical community until rediscovered by Balbus
& Hawley (1991). MRI requires that the angular velocity decrease with distance
from the rotation axis, Q°/dr < 0. Unlike Rayleigh’s centrifugal instability, MRI
may occur when specific angular momentum increases with radius, 0(r*Q)*/dr > 0.
These conditions arise in accretion disks, where the angular velocity Q oc ¥=¥/2. Simple
axisymmetric instability occurs if the magnetic field is purely axial. In ideal MHD, the
maximum growth rate is independent of the field strength; however, the wavelength
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of fastest growth is then proportional to the field, so that a resistive fluid has a
minimum field strength for instability. When the background field has azimuthal as
well as axial components, MRI modes are overstable and the growth rate is reduced
(Knobloch 1992); however, it is difficult to stabilize a disk completely if there is
any axial field (Gammie & Balbus 1994; Curry & Pudritz 1995). Purely azimuthal
field does not have local MRI instabilities, but non-axisymmetric disturbances can
be very strongly, though transiently, amplified (Balbus & Hawley 1992; Terquem &
Papaloizou 1996), and global non-axisymmetric instabilities arise with suitable radial
boundaries (Ogilvie & Pringle 1996). It is not clear whether radially local or global
analyses of idealized incompressible systems are more relevant to accretion disks,
because disks tend to be very thin in the axial direction compared to their radial
extent, and because the horizontal shear is supersonic on all scales larger than the
thickness.

Many nonlinear computer simulations of MRI have been performed. Most of the
well-resolved simulations have been made in a local Cartesian geometry intended
to represent a small portion of a disk, with artificial boundary conditions. Where
comparison is possible, local results are consistent with global simulations (Stone
& Norman 1994; Matsumoto et al. 1996; Armitage 1998; Machida, Hayashi &
Matsumoto 2000; Hawley, Balbus & Stone 2001; Hawley 2001; Hawley & Krolik
2001; Art & Riidiger 2001). Among the more important and generally accepted
results are the following (see Balbus & Hawley 1998, for a review and references up
to 1997). Starting from equilibrium conditions, instability develops as predicted by
local linear theory. When constrained to be axisymmetric, the nonlinear outcome is an
extension of the linear mode, apart from effects of compressibility (most simulations
assume a compressible fluid); but three-dimensional simulations tend to become fully
turbulent. Sustained turbulence is strongest when the axial field has a non-zero spatial
average over the disk or local computational volume, i.e. (B,) # 0 (Hawley, Gammie
& Balbus 1996). Even when (B.) = 0, however, the field energy and turbulence
apparently sustain themselves indefinitely in the presence of a steady mean shear,
provided that resistive effects are sufficiently weak (Brandenburg et al. 1995; Hawley,
Gammie & Balbus 1995; Fleming, Stone & Hawley 2000).

There exists a body of experimental work on magnetized Couette flow (Donnelly
& Ozima 1960, 1962; Donnelly & Caldwell 1964; Brahme 1970), but the MRI has
never been demonstrated in the laboratory. The main obstacle is that liquid metals
are strongly resistive on laboratory scales, with magnetic diffusivity # 2 10° cm?s~.
The viscosity is much smaller, typically v ~ 1073 cm?s~!. Their ratio is the magnetic
Prandtl number P, = v/n ~ 107,

Chandrasekhar (1961) also analysed dissipative magnetized Couette flow. After
laying out general equations for viscous and resistive linearized axisymmetric pertur-
bations, he discarded a term involving shear from the azimuthal induction equation
on the grounds that P, < 1. In fact the neglected term involves neither v nor 7
directly. Thus the commonly used name ‘small-P,, approximation’ is somewhat un-
fortunate. It presumes that viscous and inertial forces are comparable throughout the
flow. Although this is often the case for marginal Rayleigh instabilities resisted by
viscous (and perhaps magnetic) forces, it is not the case for the MRI modes of interest
here, where viscosity is important in boundary layers only. We shall show that MRI
modes do not exist in Chandrasekhar’s approximation (§3). (Of course he did find
MRI modes, but in a separate analysis assuming ideal MHD.) We shall introduce a
different P,, — O limit that retains all terms in the induction equation but neglects
viscous boundary layers.
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Chandrasekhar’s results have been refined by Chang & Sartory (1967), Hassard,
Chang & Ludford (1972), Vislovich, Novikov & Sinitsyn (1986), Takhar, Ali &
Soundalgekar (1989), Soundalgekar, Ali & Takhar (1994) and Chen & Chang (1998),
but always under Chandrasekhar’s ‘small-P,’ approximation.

In a previous paper (Ji, Goodman & Kageyama 2001, henceforth referred to as
Paper 1), we have used local WKB methods to survey the MRI regime for realistic
materials and laboratory parameters. The most unstable modes (and perhaps the only
ones accessible to experiment in the near term) have wavelengths twice as large as the
apparatus, so that WKB methods are not to be trusted a priori. The present paper
therefore discusses the global linear analysis. We integrate the full set of viscous and
resistive equations via an initial-value scheme to obtain numerical growth rates for
cases that would be stable by Rayleigh’s criterion. The locally obtained growth rates
are found to be good approximations, even though the radial eigenfunctions are far
from being sinusoidal. We predict instability under feasible conditions: gap widths
and heights of order 10 cm, field strengths of several kiloGauss, and rotation rates of
several hundred radians per second.

A supplementary analysis shows that curves of marginal MRI stability are
well-approximated by completely neglecting viscous terms, especially for insulating
cylinders. Although P,, — 0, this is not Chandrasekhar’s approximation. It eliminates
the velocity perturbations from the analysis and leads to a system of only four radial
derivatives. The boundary conditions on velocity are not satisfied by the reduced
system even with stress-free (slipping) boundaries. This is resolved by restoring the
viscosity, as we show by a boundary analysis (§4) and by numerical examples (§5).
The magnetic eigenfunctions and the growth rate are insensitive to the viscosity when
P, is small. When characterizing stability of MRI modes in liquid metals, dimension-
less numbers based on viscosity, such as the Hartmann and Taylor numbers, are less
natural than numbers that remain finite as P, — 0, such as the Lundquist number
and magnetic Reynolds number.

2. Basic equations and boundary conditions

We use cylindrical coordinates r,0,z aligned with the rotation of the fluid, and
Gaussian electromagnetic units. In equilibrium, the magnetic field is constant and
parallel to the axis; it is described by the associated Alfvén speed V, = By/(4np)'/?,
where p is the (constant) density of the liquid metal. (In ideal MHD, a uniformly
magnetized incompressible fluid supports transverse waves that propagate along field
lines at speed V4. The angular velocity is Q(r); see e.g. Roberts (1967).) Perturbations
are axisymmetric and sinusoidal in z with wavelength 2n/k:

8B, /(4np)'/? = B.(r,t)coskz, v, = @.(r,t)sinkz,
3By /(4mp)'/? = Bo(r,t)coskz, vy = @y(r,t)sinkz, (2.1)
0B./(4np)'/? = B.(r,t)sinkz, Ov. = ¢.(r,t)coskz.

We often write h = n/k for half the wavelength, having in mind an experiment of
finite height h and rigid vertical boundaries.

Perturbations associated with a single mode are exponential in time, but it is
convenient to allow for general time dependence and discover the fastest-growing
mode by integrating the linearized equations forward in time. These equations are
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(see the Appendix)

Bo = n(D — ks 4+ kVapo +rQ'B,, (2.2)
0o =v(D — kg —kVaPoy —r'(?Q) ¢y, (2.3)
B = n(D —k*)p. +kVao,, (2.4)
or =v(D = k), — kVap, + 11, (2.5)
(k* — D)IT = 2Qk*¢p,. (2.6)
The prime in equations (2.2) and (2.3) stands for d/0r, and
0 10 1

o ror Y
Note that Chandrasekhar (1961) denotes the latter operator by DD..

Equations (2.2) and (2.3) are the azimuthal components of the induction and
Euler equations, while (2.4) and (2.5) are the corresponding radial components. By
eliminating the auxiliary function IT between equations (2.5) and (2.6), one obtains an
equation equivalent to Chandrasekhar’s equation (168), although some differences in
sign occur because we have taken perturbations proportional to sinkz where he took
coskz and vice versa. Our equations (2.2), (2.3) and (2.4) correspond to his equations
(163), (160) and (162), respectively.

The flow is confined between concentric cylinders with radii r; < r,. If these are
perfectly conducting, the magnetic boundary conditions are

B, =0,  (rBy) =0. (2.7)
If perfectly insulating, then (I, and K, are modified Bessel functions)
[krlo(kr)]/11(kr) at r=ry
—[krKo(kr)]/Ki(kr) at r =r,, (2.8)

ﬂ() =0 at r=ry,r;.

0
a(rﬁr) = ﬁr X {

The conditions on velocity are
¢, =0, vpy =0=1v(re,). (2.9)

We have put the viscosity in the latter two conditions so that ¢y and ¢, = (re,)'/(kr)
will be unconstrained when the flow is inviscid.

The insulating condition (2.8) on f, is not accurate for an experiment of finite
height h = n/k, since it assumes a vertically periodic solution for the vacuum field
outside the cylinders. The conducting conditions (2.7) do not have this drawback. In
both cases, there will be viscous boundary layers at the top and bottom (unless the
end caps rotate differentially), but we expect that the error caused by neglecting those
layers is small for P,, ~ 107% and growth times shorter than the Ekman circulation
time. In any event, the end caps should be insulating so that no magnetic stress acts
upon them.

3. Why the small-P,, approximation suppresses the MRI

The underlined term in equation (2.2) is the critical one that Chandrasekhar (1961)
and subsequent authors discarded on the grounds that P,, < 1. To see that this term is
necessary to the MRI, it is useful to reduce equations (2.2)—(2.6) to a single equation.

For brevity, assume a mode with definite growth rate s, and write D; = D — k2,
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w4 = kV 4. Equation (2.4) yields
¢, = w;' (s =Dy (3.1)

Substituting for ¢, in equation (2.5), applying Dy, and eliminating D, I1 via equation
(2.6), gives

99 = —(2Qk*w4)~" [(s — vDi)(s — nDy) + @3]1Di .. (3.2)
Solving for By from equation (2.3) and eliminating ¢y and ¢, in favour of f,, gives
(rQy

1
m[(s — vDy)(s — nDy) + 031Dy — p

Using these to eliminate ¢y and fy from equation (2.2) yields the desired tenth-order
equation:

o=y’ {(S—ka) (S_V/Dk)}ﬁr- (3.3)

{ 5= ¥D1ts = D0 + 015515 = vDu)s = D) + 0~k 2D)
20y

r

5= s — D | = R @p. G

We are interested in Rayleigh-stable cases. Without loss of generality, we may
assume that the angular velocity () and vorticity (r~'(#’Q)’) are positive throughout
the flow, but the shear (rQ’) may be negative. Now Dj, is clearly negative definite and
self-adjoint with either of the boundary conditions (2.7) or (2.8). In the narrow-gap
limit (r, —ry)/(r, +r1) — O, the angular velocity and vorticity are positive constants.
It follows that the operator in braces in the left-hand side of equation (3.4) is positive
definite for non-negative real s. Therefore, at least in the narrow-gap limit, there can
be no modes with positive real growth rate when the underlined shear term is neglected
and the Rayleigh stability criterion is satisfied. We interpret this to mean that the MRI
is not present.

Previous studies of the time-dependent problem have discarded the time derivatives
in the induction equation as well as the underlined term (Chang & Sartory 1967;
Chen & Chang 1998); in this case, the operator in question becomes quadratic in s so
that the coefficient of Im(s) is positive-definite for Re(s) > 0, which rules out complex
growing modes, i.e. overstabilities.

Unfortunately, we cannot draw such strong conclusions in the wide-gap case where
Q and perhaps also r~!(r’Q) vary significantly with radius. The operator on the
left-hand side of equation (3.4) is no longer self-adjoint in general, because D, and
2 do not commute. For marginal modes, however,

2 2 29 /
{ [va + “:;‘] 1 {vD,f + “ﬂ _yp, ) } 0, = —waQp  (3.5)

2Qk? r

in which we have used equation (3.1). In this case the problem is only eighth order
in radial derivatives if the right-hand side is neglected, as noted by Chandrasekhar
(1961). More importantly, the operator in these curly braces is self-adjoint in the
interesting special case that
b

Qr)y=a+ e (3.6)
since r~1(r’Q) = 2a is then constant, and the rest of the operator is symmetrical.
Equation (3.6) is the angular-velocity profile of a Couette flow in steady state, because
it implies a radially constant viscous angular-momentum flux. We conclude that there
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are no Rayleigh-stable marginal modes when the magnetic shear term is neglected,
even for wide gaps.

4. Boundary-layer analysis for marginal modes

If v =0, then as the growth rate s — 0, equation (3.4) reduces to
e (PQ) o wj

e 20k

Even with the right-hand side included, this is only a fourth-order system. Paradoxi-

cally, there are six boundary conditions to be satisfied: ¢y and ¢, are not constrained

when v = 0, but ¢, = 0 at both boundaries, in addition to a total of four magnetic

conditions. For the insulating case (2.8), the paradox is resolved because equations

(3.1) and (3.3) show that both ¢, = 0 and fy = 0 are equivalent to D, f, = 0, so that

there are only four independent boundary conditions after all. But in the conducting

case (2.7), we have via equations (3.1)—(3.3) that 5, = Dyf, = (rDif,) = 0 at both
boundaries, and not all six conditions can be satisfied.

The crux of the difficulty is the azimuthal Euler equation (2.3), which reduces to an

algebraic relation. At zero viscosity and growth rate, azimuthal force balance requires

By 00By

2951);« = m oz ) (42)

Dif, = —w’rQ'p.. (4.1)

so that the Lorentz force (Jj. x By) balances the Coriolis force, which vanishes at
the boundary. If the boundary is insulating, then 6By (oc Jj.) also vanishes. But
at conducting boundaries, 0By #* 0 (0j. # 0), so that viscosity must intervene to
maintain the azimuthal force balance. For small P,, the marginal eigenfunction
displays a dramatic boundary layer (figure 3).

Viscous boundary layers are common in hydrodynamics. Normally they occur
because the tangential component of velocity must match that of the boundary itself,
even when the viscosity is small (a ‘no-slip’ boundary condition). For conducting
cylinders, however, a boundary layer would occur even if the viscous stress vanished
at the boundary, because of the impossibility of satisfying equation (4.2). In the present
case, the viscous layer is driven by tangential magnetic field (or normal component
of current) rather than tangential velocity.

To clarify the relationship between the viscous and inviscid problems, especially
when s = 0, we now perform a boundary-layer analysis. Our problem differs from a
standard Hartmann layer (e.g. Roberts 1967) because of the importance of Coriolis
forces; and also because, when the cylinders are conducting, there is no component
of the field perpendicular to the boundary.

Since the viscosity is small, we let 0 be the characteristic width of the boundary
layer and suppose that ¢ oc v" is small compared to the cylinder height and gap
width; the scaling exponent n is positive but as yet undetermined. For definiteness,
we restrict the discussion to the inner boundary r =~ ri. Let x = (r —ry)/0 be a
dimensionless coordinate perpendicular to this boundary. On the scale , background
quantities such as Q, rQ’, r~!(r>Q) and r itself can be regarded as constants. Hence
(3.4) is an equation in constant coefficients, so that the quantities (2.1) vary with x as
a superposition of fundamental solutions having exponential dependence:

10
(Brreoon ) m e >y expl(gyx),
a=1
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the amplitudes y* = (B, ..., ") being constant. The dimensionless wavenumbers
{q.} are the roots of the equation obtained by substituting f5, oc exp(gx) into (3.4):

254 21,256 458 21,2510
g+ (2wA5 ) q° — <K l:f ) g + <w*‘5 ) ¢+ (42— 12) <“’Ak 0 ) —0. (43)

\Z/] (vn)? (vn)?
We have introduced the epicyclic frequency «,
1d
2 14 a2
K= dr(r Q)>. (4.4)
One sees that (4.3) will be well-behaved in the limit v — 0 if § oc v!/3. Therefore, we
choose
v\ 1/3
5= (@) , (4.5)

so that the coefficient of g* is (—1). This is not the Hartmann-layer thickness 6y =
(7v)/2/V 4. Instead, 5 ~ h'/35;°, where 65 = (2v/x)!/? is the thickness of the Ekman-
layer and h = nt/k is the cylinder height. The coefficients of ¢°, ¢> and ¢° in (4.3) are
much smaller than unity provided that u < 1, where

2.1/3 2
w3V Wy

M= g e

Clearly, u — 0 as v — 0 for any x # 0. But the inviscid limit is approached
rather slowly because of the cube root in (4.5). In terms of the local values of the
Lundquist number S (equation (5.5)), magnetic Reynolds number R,, (equation (5.6)),
fluid Reynolds number Re = R,,/P,, and vorticity parameter { (equation (5.7)), one
has the scalings k6 ~ {7V/%(Re)~'/3, and u/ké ~ {~'/>S?/R,, for modes whose vertical
wavelength n/k is comparable to the gap width. For the experimental regime discussed
below, P,, ~ 0(107%), S ~ R,, ~ O(1), and { ~ O(107?) at the inner boundary, so that
ké ~ 0(1072) and u ~ O(1071).
We rewrite (4.3) as

(4.6)

q" +2uq° — q* + ’q* + 1*'F =0, (4.7)

where F = x?(4Q° — k?)(nk?)?/w§ is independent of viscosity and ~ O(1). Then in
the limit 4 — 0, ¢*(¢® — 1) = 0, so that the non-zero {q,} are the 6 sixth roots of
unity. We shall call the corresponding y ‘microscopic’ because they vary on scales
~ 0(0). Exactly half of them increase exponentially away from the boundary, while
the other half decrease. Clearly the amplitudes of the former must be set to zero in
order to match onto a smooth flow in the interior, while the amplitudes of the other
three microscopic solutions can be adjusted to satisfy boundary conditions.

The remaining four roots for g in (4.7) approximately satisfy the reduced equation
q* — 12q*> + u*F ~ 0, so that ¢ ~ O(u); this implies a radial lengthscale that is O(/u)
and therefore macroscopic: that is, independent of v as v — 0. Any superposition of
the corresponding four y* might match onto a smooth interior flow. Hence there are
a total of 7 = (3 microscopic) + (4 macroscopic) adjustable parameters to meet the
5 = (3 no-slip) + (2 magnetic) boundary conditions given by (2.9) and (2.7) or (2.8).

This leaves two parameters at each boundary that are not locally determined, but
follow from the full solution for the linearized flow across the gap between cylinders.
The fourth-order inviscid equation (4.1), together with the magnetic boundary con-
ditions (2.7) or (2.8), has the same number of locally undetermined parameters at each
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boundary. Thus one can see in general terms how the tenth-order system (2.2)—(2.6)
reduces to the fourth-order equation (4.1) in the inviscid, marginal limit.

In more detail, one can solve the boundary-layer problem for marginal modes to
leading order in k6 and u in two steps as follows. First, solve (4.1) with the magnetic
conditions (2.8) or (2.7) to obtain the magnetic variables throughout the gap. In
general, the velocities derived from this solution via (3.1), (3.2) do not satisfy the
boundary conditions (2.9); even the radial velocity may be non-zero when boundaries
are conducting, as discussed following (4.2). In the second step, adjust the amplitudes
of the three permissible microscopic boundary-layer functions (i.e. those that decay
with distance from the wall) in order to satisfy the velocity boundary conditions.
These adjustments have no effect on the magnetic boundary conditions to leading
order because the magnetic components of the microscopic solutions are smaller than
their velocity components by O(v) or O(v*3), as can be verified from (3.1) and (3.2).

We have assumed u < 1, as appropriate for v — 0 and for the experiments
envisaged in § 5. Let us briefly consider the alternative case that u > 1, as may occur
if the magnetic field is sufficiently strong or the angular-momentum gradient x> — 0.
The coefficient of ¢® in (4.3) is now larger than that of ¢* so instead of (4.5), we
choose the boundary-layer lengthscale as

§' = (vn/w)"*,

using a prime to distinguish this from the earlier choice (4.5); then &' ~ (hdy)'/?, and

n—2 o
) = = =0

is a Hartmann number, which we suppose to be large. In place of (4.7) we have

22

g +2¢° — 1t P+ 4Q . ~_o

30
There are then 8 microscopic roots, determined approximately by (¢* + 1)> = 0, of
which half are well-behaved, i.e. decay with distance from the boundary, and two
macroscopic roots, with physical scale lengths 6'/q ~ +(4Q*> — k?)'/2/V,. This leaves
only 4 + 2 — 5 =1 locally undetermined degree of freedom, fewer by one than when
1 < 1, so the boundary is more influential for the interior flow.

The considerations of this section are important mainly in order to demonstrate that
marginal modes are possible, i.e. that they are not incompatible with the boundary
conditions required of the Couette flow. By inspection of (3.4), one can see that the
boundary layer is likely to be significantly modified if the growth rate s = v/d2, or
equivalently in view of (4.5), s = xko.

5. Numerical results

We have approximated (2.2)—(2.6) by finite-difference equations on a radial grid
uniformly spaced in x = Inr. The background angular velocity has the form (3.6),
since this is easiest to realize experimentally. It is possible and convenient to resolve
the boundary layers directly when they occur, so that a single numerical method can
be used for both growing and marginal modes. According to the discussion in §4,
the minimum number of grid cells (N) required to resolve the boundary layers of
marginal modes is ~ P, 13 L 10%; since the calculations are not expensive, we use
N > 10°. Our scheme has second-order spatial accuracy, even at the boundaries. To
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FIGURE 1. (@) Marginal stability for liquid gallium Couette flow between conducting cylinders
of radii 1y = Scm, r, = 15cm, and height h = 10cm. Solid lines are computed from equations
(2.2)—(2.6); dashed from inviscid approximation (5.9) and (5.10). Lower curves are for mean di-

mensionless vorticity { = 0.0632 (corresponding to {(r,) = 2/11), upper ones for { = 0.2205
({(r,) = 4/7). Instability occurs above the curves. In dimensionless parameters, S &~ 0.92(B/10kG);

and R,, ~ 0.66(Q,/100rads~") (upper curves), R,, ~ 0.73(Q2,/100rads~") (lower). (b) As (a) but for
insulating cylinders (2.8). Viscous and inviscid results differ by less than the line thickness.

ensure numerical stability, we use fully implicit time differencing. Spatial differences
are written in terms of the unknown dependent variables at the new time step, so that
a large linear system must be solved. Actually, our finite-difference matrix is band
diagonal with 10 non-zero codiagonals in each of 5N rows, and it is independent of
time step. We perform LU decomposition at the start of the evolution so that only
the back substitution must be performed anew at each step.

When a growing mode is present, it eventually dominates. Then the perturbation
in the radial magnetic field at successive time steps t, and t,,; = t, + At are related
by, for example,

(1 =3A0)B,(x), tj1) = Pr(x;s 1), (5.1)
if § > 0 is the appropriate eigenvalue of the matrix defined by the spatial difference
scheme and therefore an estimate of the physical growth rate, and [AL is the corre-
sponding eigenvector. Given ﬁ,.(x j»tj) and ﬁ,(x j»tj+1), we can compute $ from equation
(5.1) without any truncation error in At as long as SAt < 1. The eigenfunctions are
similarly independent of At. This is advantageous close to marginal stability where §
is small. Our procedure is equivalent to finding the most-positive eigenvalue of the
time-evolution matrix by inverse iteration. By extending equation (5.1) to a three-
term recurrence relation, we have allowed for complex eigenvalues. But in practice,
all of our growing modes appear to have purely real values of 8. Of course, our
method is not immune to spatial truncation errors; these are O(Ax?) because we use
second-order spatial differencing.

Our initial-value code can treat slightly stable cases as well as unstable ones.
By interpolation, we find parameters for marginal stability. Results are shown in
figures 1(a) and 1(b) for material properties approximating liquid gallium: p =
6gcm™, y =2000cm’s~! and P,, = 1.6 x 107,

Marginal stability defines one constraint among the eight parameters defining the
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Couette flow: 5, v, 1, 12, k, 21, 2, and V4. Six independent dimensionless combinations
of these can be formed. The magnetic Prandtl number P,, = v/n is one of these. The
ratios

r+r

A= 2
y (52)

and
€= g (5.3)

define the geometry, where d = r, — ry is the gap width and h = n/k is half the
vertical wavelength. It turns out that the magnetic eigenfunctions f, and fy of the
most unstable mode have a roughly parabolic dependence on r, and since one or
the other vanishes at both boundaries, the effective horizontal wavenumber is ~ 1/d.
The total wavenumber is then

AN
Kz<k2+> =_V1+e. (5.4)

d? h
The Lundquist number

Vi 2 69
nK?2 2mpe+1
scales the Alfvén frequency in terms of the magnetic diffusion rate yK2. In astro-
physics, S is often called ‘magnetic Reynolds number’. The plasma community gen-
erally reserves the latter term for a quantity involving fluid velocity, so we define the
local magnetic Reynolds number by

Q
R,(r) = W (5.6)
The viscous Reynolds number is of course R,/P,,. The dimensionless vorticity
()
= 5.7
(=3 (57)

parametrizes the angular momentum gradient, and the Rayleigh stability criterion is
simply {(r) = 0. In the astrophysical literature, the radial variation of angular velocity
is often described by an index
dlnQ
=—— that (=2—gq.
dlnr 04 : 1
Of course, { =2 and ¢ = 0 in a uniformly rotating flow.
When the gap is wide (4 < 2 in (5.2)), R, and { may vary considerably across
the gap, and it is useful to define mean values of these dimensionless parameters.
Following Paper I, we introduce Q = /Q,Q, and

Q 2(7’%92 — 1"1291)

Rm 2R { = =
nk? : (r3—rH)Q

(5.8)

The locus of marginal stability is actually a hypersurface in the space
(P, A,e,0,S,R,,). The curves in figure 1 are cuts through this locus at constant
values of the first four parameters: P, = 0 and P,, = 1.6 x 107%; 4 = ¢ = 1; and
two positive values of { as indicated. The curves are drawn in physical units for the
density and diffusivity of gallium.
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FIGURE 2. (a) Marginal eigenmode with conducting boundaries, for B = 3kG, Q; = 314,
Q, =379rads™! and { = 0.0632. Left-hand panel: full gap. Right-hand panel: expanded view near
the inner cylinder. Solid curves: f3,; short-dashed: f3,; dot-long-dashed: fy x 5; dotted: ¢, x 1/3;

long-dashed: ¢y ; dot-short-dashed: ¢. x0.07. (b) As (a) but for insulating boundaries and Q, = 284,
Q, =344rads™!, { =0.0632.

The inviscid results shown in this figure were calculated by an independent nu-

merical method based on equation (4.1), which we have unpacked into a pair of
second-order equations (using (3.3) with s,v — 0):

_rog 0 S?
Dy, = Wﬁe =K mﬁea (5.9)
whr rQ’ , [(1+€%)s?
Dypo = Wﬁ(} ——pB =K Wﬁo + (2 —=0Rup|, (5.10)

together with the magnetic boundary conditions (2.7) or (2.8). Because of the large
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FIGURE 3. Narrow-gap modes for P, = 0 and € = 1. (a) Curves of marginal stability for { = 2/11
(lower curves) and { = 4/7 (upper). Solid line for conducting walls, dashed for insulating, and dotted
for local approximation (5.11). (b) Narrow-gap eigenfunctions f, (solid curves) and fy (dashed), for
{ =2/11 and S = 0.4. Since eigenfunctions are symmetric about the centre of the gap (x = 0), only
half of each is shown: conducting on the left, insulating on the right.

magnetic diffusivity, the magnetic variables are very well-behaved, so that this fourth-
order system can be solved efficiently by a shooting method.

Comparing figures 2(a) and 2(b), one sees that viscosity is more important for
conducting boundary conditions than for insulating ones. In the conducting case,
¢, and Py are nearly proportional to one another throughout most of the flow
(figure 2a). This follows from equation (2.3) in the limit s,v — 0, as we discussed
in §4. Since the radial velocity perturbation (oc ¢,) must vanish at the wall but the
azimuthal magnetic perturbation (cc ffy) does not, there is a thin boundary layer in
which viscous stress balances the azimuthal magnetic force. The right-hand panel
shows that the boundary layer is resolved well by these calculations, which use 4000
grid points uniformly spaced in Inr across the gap. At an insulating boundary, on
the other hand, fy vanishes with ¢,, and this leads to a much less dramatic viscous
layer (figure 2b). The characteristic boundary-layer thickness (4.5) is 6 &~ 0.054 cm at
r = r; in both of these cases; the microscopic roots of (4.7) are predicted to have a
damped oscillation with wavelength (4n/ \/5)5 ~ 0.39cm, clearly in agreement with
the right-hand panel of figure 2(a).

The narrow-gap limit A — oo is experimentally impractical but theoretically im-
portant. Figure 3 shows eigenfunctions and curves of marginal stability in this limit.
Because of the boundary conditions, the eigenfunctions cannot be sinusoidal in r
or x = (r —ry)/d, even though the equations of motion have elementary solutions
of this form. The fourth-order inviscid system (5.9) and (5.10) has four roots for
the radial wavenumber (or two if sign is ignored) at given parameters (e, S, R, {) of
the equilibrium, which are constant across the gap. (Note K is not an independent
parameter, since Kd = \/e? + 1.) The solutions satisfying the boundary conditions
are linear combinations of four complex exponentials, each containing one of these
wavenumbers, and the parameters (e, S, R, () must satisfy one constraint in order
that a solution exist. If, however, one simply sets k., = n/d in the hope of obtaining
an approximate constraint, then D, — —K? and equations (5.9) and (5.10) or (4.1)
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Q, =413.6, Q, = 50rads! Q, =377.0, Q, = 40.84rads~!

B, Conducting Insulating Local B, Conducting Insulating Local
(G] [s7'] [s7'] [s7'] [G] [s7'] [s7'] [s7']
1893 0.00 — — 0 16.07 16.07 17.11
2135 5.35 0.00 — 500 17.46 17.00 17.98
2500 9.46 6.46 6.55 1000 20.10 19.04 19.85
3000 11.50 10.83 10.48 1500 22.23 21.07 21.58
3500 10.96 12.66 11.36 2000 23.20 22.50 22.49
4000 8.42 12.84 9.99 3000 21.13 22.83 20.78
4500 4.16 11.78 6.63 4000 14.04 19.82 13.50

4868 0.00 10.38 291 5000 4.219 14.38 —

5500 — 7.10 — 5500 1.438 11.22 —

6000 — 3.97 — 6000 — 8.093 —

6588 — 0.00 — 6500 — 5.261 —

7000 — 2.987 —

8000 — 0.8246 —

9000 — 0.4272 —

10000 — 0.2131 —

11000 — 3.614¢-2 —

11220 — 0 —

TABLE 1. Growth rates in gallium.

would yield

1+¢€
22-C0-(857)
This corresponds to the dispersion relation for marginal modes obtained in Paper I

from a local WKB analysis with a ratio e of vertical to horizontal wavelength.
Evidently there exists a minimum Lundquist number for instability,

L
-0

R = §? (5.11)

Simin = (5.12)

and in the opposite limit of large S,

R, Q 1+ €2
— = R . 1
s v\ 2e=0 (513)

Figure 3 shows that the predictions (5.11)—(5.13) are qualitatively correct.

Numerical growth rates are given in table 1 for two representative angular-velocity
profiles, both with r, = 3r; = 15cm, h = 10cm, and the material properties of
gallium. The first case has { = 0.063 and hence is Rayleigh-stable. The second has
{ = —0.019, so that the Rayleigh instability occurs at zero field strength. Growth rates
are shown for conducting and insulating radial boundary conditions. Larger fields
are required to initiate and to quench MRI with insulating boundaries than with
conducting ones, presumably because perturbed lines of force expand past insulating
walls into a volume slightly larger than the Couette flow itself. The final column of
this table shows growth rates computed from the algebraic local dispersion relation
given in Paper 1. Once again the WKB analysis predicts the global growth rates
remarkably well, even though the wavelengths involved are actually larger than the
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FIGURE 4. Visualizations of the MRI eigenmodes for the Rayleigh-stable cases from table 1 at
B.o = 3kG: (a) conducting boundaries, (b) insulating. Solid and dotted lines indicate positive and
negative values, respectively. See equation (5.14) for definitions of flux and stream functions y, .

(@) (0)

=Mal>

A A

FIGURE 5. Rayleigh-unstable cases from table 1 at of B,y = 0kG (a) and 3kG (b),
both with conducting boundaries.

gap width, and the angular velocity and shear rate vary by a factor = 9 across the
gap.

Figures 4 and 5 show two-dimensional cross-sections of selected modes from table 1.
The flux and stream functions are related to the poloidal perturbations by

3Bp
(4mp)'/2

In all cases, the poloidal velocity field consists of a single roll. The effect of the
choice of boundary conditions is seen most clearly in the azimuthal perturbations.
In figure 4(a) and figure 5(b), it looks as though dvy does not vanish at the inner
boundary; in fact it does vanish, but the viscous boundary layer is too small to be
resolved by these plots. Figure 5(a) does not show this behaviour because the magnetic

=V60 xVy, Jvp =Vl x Vy. (5.14)
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forces are absent; this mode is a classical hydromagnetic centrifugal instability. A
boundary layer of the ordinary nonmagnetic variety occurs in ov,. The corresponding
magnetized case shown in figure 5(b) has a magnetically driven boundary layer similar
to that of the Rayleigh-stable flows.

6. Summary and discussion

We have presented a global linear stability analysis for magnetized Couette flow,
including the dissipative effects of viscosity and resistivity, in regimes where magneto-
rotational instability (MRI) is possible. In view of the properties of liquid metals, and
for plausible experimental lengthscales, resistivity is the main obstacle that must be
overcome to demonstrate MRI. Previous theoretical studies of magnetized Couette
flow have focused on the problem of suppressing Rayleigh instability with a magnetic
field, and they have simplified the induction equations so as to reduce the number of
radial and time derivatives in the problem. Such approximations may be adequate for
the regime of interest to those studies, but not if one is interested in MRI. Therefore
we have worked with the full induction equations.

Particular attention has been given to marginal stability. All of our numerical
evidence indicates that exchange of stability occurs at vanishing complex growth
rates; we have not encountered any overstable modes. In the inviscid limit of marginal
stability, the number of radial derivatives reduces from ten to four, but the velocity
perturbations become singular at conducting boundaries. The dominant singularity
arises from an unbalanced tangential magnetic force, not from the usual pressure
and inertial effects that cause boundary layers in unmagnetized fluids. Despite these
complications, the inviscid approximation predicts the locus of marginal stability
reasonably well for liquid metals.

Solving the linearized initial-value problem by finite differences, we have calculated
growth rates and stability boundaries for a liquid metal approximating gallium in an
experimentally plausible geometry. For easier comparison with other theoretical work,
we have also made calculations in the narrow-gap limit and expressed our results in
the dimensionless coordinates of Lundquist number and magnetic Reynolds number.

Remarkably, the growth rates are predicted reasonably well by a simple WKB
approximation even though the WKB modes do not satisfy the boundary conditions
and have a radial wavelength twice the gap width, and even when the rotation rate
varies by an order of magnitude across the gap. We conclude from this that the
algebraic WK B dispersion relation can be used for preliminary experimental design,
at least for gaps no wider than considered here (i, : vy =3 : 1).

There are good reasons to attempt an MRI experiment. First, one can hardly exag-
gerate the importance of this instability: few or no plausible alternative explanations
exist for the dissipation of orbital energy in accretion disks, which are fundamental
to so many of the most energetic sources known in the universe. Yet all present
knowledge of the instability is purely theoretical, based as it is on linear analysis and
computer simulation; the constraints provided by astronomical observations are very
indirect. It is prudent to put these theories to a laboratory test.

Secondly, computer speed limits the range of spatial scales that can be modelled in
the simulations. Barring unforseen algorithmic breakthroughs, the smallest resolvable
scale in a three-dimensional simulation improves only as the fourth root of the rate
of arithmetic operations. Here it must be acknowledged that the large magnetic
diffusivity of liquid metals severely limits the number of degrees of freedom in the
magnetic field that can be excited. The simulations are well ahead of any forseeable
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experiment in this respect. In fact, simulations indicate that magnetic Reynolds
numbers and Lundquist numbers at least 100 times larger than the minimum necessary
for linear instability are required for dynamo action in the absence of an externally
imposed field parallel to the rotation axis (Fleming et al. 2000). On the other hand,
the viscous Reynolds number of such an experiment would be Re = P,; IR, = 10°,
a value still out of reach of direct numerical simulations. Also, small R, need not
restrict the experiment to linear behaviours. In the local disk simulations of Fleming
et al. (2000) at about twice the minimum R,, for linear MRI, a violently fluctuating
nonlinear state was reached in which the time-averaged magnetic energy was about
25 times larger than that of the externally imposed field. Similar calculations and
results have recently been reported by Sano & Inutsuka (2001).

Although large R,, is the rule in astrophysics, the dimensionless parameters of some
systems may be similar to those of our proposed experiment, namely R, and S of
order unity, Re very large, and an externally imposed field. Such systems include
the inner parts of relatively cool disks (protostellar disks and quiescent cataclysmic
variables, for example) around stars with their own magnetic moments (Gammie
1996; Gammie & Menou 1998).

Lastly, relatively little laboratory MHD work has been done in which the inertia
of the fluid is important (large plasma f). The experimental field appears somewhat
underdeveloped when measured against its potential importance to geophysics and
astrophysics. Because it promises to be achievable at fairly modest cost in a classic
experimental framework (Couette flow), MRI is a good place to start.

This work was supported by the US Department of Energy (H.J.) and by NASA
grant NAGS5-8385 (J.G.).

Appendix. Derivation of linearized equations

For completeness, equations (2.2)—(2.6) are derived here, although much the same
derivation can be found in Chandrasekhar (1961). The equations of incompressible
MHD are

B+v-VB—B-Vo=yV’B, V-B=0,
B-VB

v+v-Vo+p'VP — =y, V-v=0,

in which P = p + B?/8n is the hydrodynamic plus magnetic pressure. In cylindrical
coordinates, near an equilibrium By = Be, = constant and vy = rQ(r)ey, linearized
axisymmetric perturbations dv and B satisfy

OB, — Bd.ov, = n(d,0] + 02)5B,, (A1)
0By — Bo.6vy — B0, Q2 = n(0,0] + 02)5 By, (A2)
50, — 2Q0vy + aré—P — iaZ(SB, = v(0,0] + 0%)ov,, (A3)
p  Anp
. t B A AT 2
00y + 00,0/ (rQ) — maz(SBg =v(0,0] + 0;)dvy, (A4)

ob, + azé—P — iazéBZ = (010, + 0%)dv., (AS)
p  4np
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010B, + 0.6B. =0, (A6)
dlov, + 0.6v. =0, (A7)
in which the dot denotes 0/0t, and other recurring operators are
0 0 s 0 1
G:=gp G=gp G=zp o

Equations (A 3) and (A 5) presume that p, like # and v, is spatially constant. Applying
! to equation (A 3) and 0, to equation (A 5) and summing the results, one finds that

@a+£ﬁf=@mmm,

in view of equations (A 6) and (A 7). With another application of J,, this becomes

. P
(0,07 + 01T = ?(2Q6vy), where [T = 2Qdvy — 8,5—, (A8)
0
so that the radial Euler equation (A 3) can be stated as
B .
00, —IT — —0.6B, = v(0,0] + 0%)dv,. (A9)
4mp

With the z dependences given by equation (2.1) for the linearized quantities, equations
(A2), (A4), (A1), (A9) and (A 8) reduce to equations (2.2), (2.3), (2.4), (2.5) and (2.6),
respectively.
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