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Abstract

The gability of the hydromagnetic Couette flow is investigatetlen a constant current is applied along the axis of the
cylinders. Itis shown that if the resulting toroidal magnetic field depends only on this current, no linear instability to axisymmetric
disturbances is possible.
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1. Introduction

Magnetorotational instability (MRI) is important to thrical astrophysics becausédtthe only linear instability
known to grow robustly under the conditions prevailing imshaccretion disks: an electrically conducting fluid,
rotating with local angular velocity2(r ); a positive gradient of specific angular momenturr,22)2/dr > 0 (stable
by the Rayleigh criterion); and a negative gradient of angular veldaitg/or < 0. It was revealed by astrophysicists
Balbus and Hawley in the early 1990's. Developments in astrophysics, too large to survey in this letter, have grown
up around this problem]. In the ongoing investigation of the best way to demonstrate MRI in the laboratory, several
configurations have been examined. Generally, they involve hydromagnetic Couette flow between rotating cylinders
along the axis of which a magnetic field is applied. On the other hand, if an electric current is applied along the axis,
a toroidal component to the magnetic field results. Some of the earliest and most relevant theoretical results were
those of Velikhov P] and Chandrasekhar3], though both these researchers considered ideal Taylor—Couette flow.
Elsewhere, Chandrasekhdl jncluded dissipation but bgiropping one term, assumed to be small, the instability
envisioned here cannot arisgf]. Shortly after Chandrasekhar’s results, Got@hdnd then DiPima and Pan§]
investigated theoretically the effect of a purely toroidal magnetic field on the stability of Couette flow in the Rayleigh-
unstable dynamical regime.

More recently researchers have begun to focus orcéise where the magnetic field has a toroidal component
as well as an axial component, while the basic flow is in the Rayleigh-stable regime dynamically; the regime in
which MRI is found. For instance, iRliger et al. §] have reported on ongoing work of this type. The purpose of
the present note is to show that without the axial magnetic field, with only the toroidal field due to an axial current,
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the flow is strictly stable to linear axisymmetric disturbances. This is demonstrated using a method of quadratic
functionals popularized by Chandrasekhdr priginally used by Syngel[0]. Along with this, an operator notation

is introduced, which aids in keeping track of the functionals involved. To the extent that most current work on the
subject uses asymptotic and computational methods, this approach is different. The first author has been working wif
the astrophysicist Goodman to bring these techniques to bear on MRI probBms [

2. The governing equations and derivation of stability

The basic flow isy = r £2ey (in cylindrical coordinates, 6, z) between two cylinders of radii1, r» and angular
velocities (21, (2:

b Qor2 — r? [
Q(r)=a+_2, a= %, b= ﬁ (1)
r ry —ri ry>—ryg

A toroidal magnetic field = Zr—Jeg = H (r)ey permeates the fluid from a constant line curréiaiong the axis of the
cylinders, in whichp is the density of the fluid andis the kinematic viscositys is the dectrical conductivity, ange

is the magnetic permeability. The magnetic diffusivity is defined as (4w o) ~1. The flow regime o admits the
possibility of a contribution to the toro&dd component of the base magnetic field from an electric current in the fluid
in the axial direction, but that is ignored here. Nondimersil parameters for the flow might be magnetic Prandtl
numberPy = v/u, and Reynolds numbeR = erlz/v. The reslts to be derived @ independent o, andR.

2.1. The governing equations

Following DiPrima and Pand], linear perturbations are taken to be independefitarid proportional to®+1kz:

UF or (r) )
V/ — Ué = | ¢s (r) eSt+IkZ,
vy @z(r)
H, Br(r) _
H/ — HQ/ — ﬂ@(r) eSH*IkZ'
H, Bz(r)

The axisymmetric linearized equations of motion become

dH H dn
_ _ K2 _ _r 2z
s6s = (DD, k)ﬂe+<dr r)gor rg )
cor = o0 — ks L Lo - 192
9 = v(DDy — ko 4npr(D*H)’3r Ca r<Qer, (3
sfr = (DD, — k), 4)
2 2.2 ) 2
S(DDy — k9)¢r = v(DDy —k9“pr —k %r—‘%_mk ©o. )

For perturlations, we follow Chandrasekhar’s notatibri = df/dr, D, f =r~1D(rf). The vertical components,
andpB; have been eliminated from Eq®)—(5)usingV+v' = V-H' = 0.
The boundaries are impenetrable and “no-slip”, so that

¢r = Dgr =0, (6)
wo =0, atr =rq,rs. (7
The condition onD¢; derives from the continuity equatidd,¢, = —Kkg; sincep, = 0 on the walls. We take the

cylinders to be partially conducting as was considered by Robgtisrequiring that the magnetic perturbations
match onto exterior solutions satisfyiMyx H’ = 0, which are well-behaved as— 0 and as — oc. The boundary
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conditions on the radial component are therefore

D.pr = ﬂr% atr =rj, (8a)

D.fr = —ﬁr% atr =rop, (8b)
while those on the toroidal component are

o:7/D>k/39 = ﬂe% atr =ry, (9a)

whereln(kr) andKp(kr) are the modified Bessel functions (of orders= 0, 1 in this work), o’ is the conductivity

of the walls. So wherns’ — 0, the insulating boundary conditions are recovered. And wher> oo, perfectly
conducting boundary conditions restHigs. (6)—(9bympose ten boundary conditions on the tenth-order differential
system(2)—(5).

2.1.1. The radial magnetic perturbation

It becomes clear thg#t) uncouples from the rest of the system. It is important to show that(@#hand(8b), the
only solution of(4) which may occur if Ré) > 0, that is, for neutral or amplified disturbancegjs= 0. Such a
conclusion was drawn by Gotofi][some time ago, though with different boungi@onditions. This is accomplished
by multiplying (4) by r B, and integrating fromm = ry tor = r to obtain

r2 r2 _
S/ rigel%dr = (DD, — K?)B; Brrar
;

1 r

. 2 _df1d 200 2
—fr {rﬂrd—r[r—d—r(rﬂr)]—rk |Br | }dr

1
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= [rB DBl — f r(1DyBr |? + K2| B |%)dr
r

_ kKo(krz) 2 klo(kry)
) r2Br (r2)| L (krD)

r
- f “( DL 2+ K2t By Dyck, (10)
r
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rilBr (ro)?

which follows after integrating byarts and applying the boundary conditigBa)and(8b). From thereal parts of the
extrenes of(10) we conclude that Res) < 0. Henceforth thn, we will sets; = 0 in the system.

2.2. Operator formulation

In order to dmplify the derivation of the stability criterion, we make a reformulation. An operator notation is
introduced, which clarifies the nature bitanalysis. The system thereby becomes

J
—sMgr = vM*Mgy — k22X =8y — 20K20;. (12)
Tpr?
43
By = —nMy By — 2o (12)
1d
Spg = —vMogy — r—a(rzg)ﬁor- (13)

In this notation, M, M*, Mg, and M, all denote—DD,. + k2, but are considered different operators because of
the distinct boundary conditions satisfied by the functions on which theyl&ktHor this reasonM*M denotes
(—DDy +k?)?2. Thatis,M acts on functions that have the same boundary conditiops[&s. (6)], M* assumes that
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the functions satisfy no particular boundary condition, wheMgsises the boundary conditions@f [EqQ. (7)] and
M-, the boundary conditions @ [Egs.(9a)and(9b)]. Consequently, whes” — 0, the case of insulating boundary
conditions,M,. — Mp. The case of perfectly conducting boundary conditions, that'is;> co also has meaning as
will be shown.

Introduce an inner product,

r2
(. g) = f rf (g )ar, (14)
r

1

in which the overbadenotes complex conjugation. The differential operabrd* M, andM,- all have the property
of beingpostive definitein this inner product. For example, let us show tlist;: By, Bg) > 0. This fdlows quite
readily by a calclation similar to(10)

ra _
(Mo Bo, Bo) =/ r Bo(r)(—D D, + k)B4 (r )

r
(and integrating by parts to obtain)
_ - M2
= — [ BoDuBoli’ + f r (1D« Bsl + K% Bo| >
r

o kKo(kr2) o klo(kry)

2 2
= Ryl 2P DI+ Sl ()
ro
+/ r (|DxBg1% + k2| Bp|)dr
r
> 0. (15)

The boundary condition@a) and (9b) were apfied. Thecase where’ — oo, is dealt with by noticing that the
boundary conditions terms vanish leading to

r2

(Moo fs, Bo) =f r(ID.Bs|? + K| Bo|?) .
r
Thus, for all wall conductivities’, 0 < ¢’ < oo, (M, By, Bs) > O.

The calculations fokMgy, ¢r) and (Mogg, g) are similar to those fofMq By, Bg), Snce the boundary terms
do not arise when the boundary conditid63and(7) are applied. Likewise, it may be shown tHidd*Mey , ¢r) =
{(Mgr, Mgr) = [Mgr |2 > 0.

2.3. Derivation of the stability criterion

We want toderive the bllowing criterion. MRI is suppressed, in fact no instability at all occurs, for the system
(2)H5). We also onclude that there are no marginal modes

The derivation proceeds as follows. Make use of the inner prdddgts in(15), forming that of(11) with ¢, to
obtain

k2
(MM -+ SMgr ) = (3 2fo, 1) + (22600, 90) (16)
From(12)and(13), this may be re-written as
2
1
(WVM*M +sMygr, ¢r) = —%(ﬂa, MMy +9)Bg) — 5<9k2¢0, (vMo + S)¢g), (17)

smceFE(rZQ) = 2a is apositive constant. It was established by Synt@ fnd by Chandrasekhad] that for the
azimuthal velocity functiomy, the fdlowing is true:

Re((—D D, + k?)gp, 2k%ps) = Re(2k?py, (—D D, + k?)gs) > O, (18)
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by virtue of (7). Herce, taking the real part ¢iL.7), conbining terms having the growth rasethe result is

k2
Re(s) {<M¢r,¢r> +a L(2k%pp, gg) + —ﬁf (Bo. ﬁe)}
mp

2 punk? -1 2
= —v|[Mgr || —H<Mwﬂa,ﬂa>—a vRe((Mogg, 2k“ps))

< 0. (19)

An immediate onsequence of this is R® < 0, and hence stability. Since B® is strictly negatve, there are no
marginal modes.

3. Conclusions

The desire to test for MRI in the laboratory inspires several configuratiardigBr et al. 9] showed hat imposing
both azimuthal and axial magnetic fields together reduces the critical Reynolds number to obtain MRI. They go
on to conclude that incorporating an axial current is the most promising design for obtaining MRI in a laboratory
experiment. It is of interest then how these results compare. One might therefore study the set-up in which both ar
axial current and an axial magnetic field occur. If a measure of the ratio of the toroidal to axial magnetsp field
given by

2
V= Bory’

whereJ is the current andy is the radius of the inner cylinder, then the prediction here is th&as- 0, y — oo,
and in this limit all of the eigenvalues of the linearized axisymmetric stability equations will exhits) Re0. Our
analytical results suggest that the axiatrent is ultimately stabilizing. Thaclusion of some axial component to the
magnéic field appears to be necessary in order to see axisymmetric modes of instability.
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