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Bistability between Equatorial and Axial Dipoles during Magnetic Field Reversals
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Numerical simulations of the geodynamo in the presence of heterogeneous heating are presented. We
study the dynamics and the structure of the magnetic field when the equatorial symmetry of the flow is
broken. If the symmetry breaking is sufficiently strong, the m = 0 axial dipolar field is replaced by a
hemispherical magnetic field, dominated by an oscillating m = 1 magnetic field. Moreover, for moderate
symmetry breaking, a bistability between the axial and the equatorial dipole is observed. In this bistable
regime, the axial magnetic field exhibits chaotic switches of its polarity, involving the equatorial dipole
during the transition period. This new scenario for magnetic field reversals is discussed within the

framework of Earth’s dynamo.
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It is now commonly believed that magnetic fields of the
planets, including Earth, are generated by dynamo action
due to the fluid motion of liquid iron inside their cores [1].
In most of the planets, the magnetic field at the surface is
dominated by a dipolar magnetic field. In some cases,
similar to Earth, the dipole field is almost aligned with
the axis of rotation. But recent observations have shown
that for some planets, such as Uranus or Neptune, the
dipole axis can be tilted up to 45° due to a significant
contribution from the equatorial dipole [2].

In the case of Earth, paleomagnetic measurements also
allow us to reconstruct the dynamics of the magnetic field.
Earth’s dipolar field has reversed its polarity several hun-
dred times during the past 160 millions years, and polarity
reversals are known to be strongly irregular and chaotic.
Chaotic reversals have also been reported in numerical
simulations [3] and in a laboratory experiment. In the
von Karman sodium experiment, the dynamo magnetic
field is created by a turbulent von Karman swirling flow
of liquid sodium due to two counter-rotating bladed disks
[4]. In this experiment, reversals of the axial dipolar mag-
netic field have been reported, but only if the two impellers
rotate at different frequencies, when the equatorial sym-
metry of the flow is broken [5]. These experimental ob-
servations are in very good agreement with a recent
theoretical model, in which reversals arise from the inter-
action between symmetric and antisymmetric components
of the magnetic field, linearly coupled by the action of an
antisymmetric velocity field [6,7].

A growing number of studies seem to assess the effect of
an equatorially antisymmetric velocity mode on geomag-
netic field reversals. First, it has been observed that the
ends of superchrons (large periods of time without geo-
magnetic reversals) are related to major flood basalt erup-
tions due to large thermal plumes ascending through the
mantle [8]. In agreement with this observation, it has been
shown in geodynamo numerical simulations that the dipole
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field reversals and the loss of equatorial symmetry seem to
be tightly connected [9], and that taking a heterogeneous
heat flux at the core-mantle boundary of Earth strongly
influences the frequency of magnetic field reversals [10].
Finally, a study recently suggested that an equatorially
asymmetrical distribution of the continents is correlated
with a long-term increase of geomagnetic reversal fre-
quency [11].

In this Letter, we report 3D numerical simulations of an
electrically conducting, thermally convecting Boussinesq
fluid. The fluid is contained in a spherical shell that rotates
about the z axis at the rotation rate (). The boundaries
correspond to fixed temperature boundary conditions. On
the inner sphere of radius r;, the temperature is homoge-
neously fixed to 7}, but a heterogeneous temperature pat-
tern g¥ is used at the outer boundary (of radius r,). The
pattern corresponds to the simplest large-scale mode,
breaking the equatorial symmetry of the flow,

T,=T;,— AT(1 — Ccosb), (1)

where T, is the temperature at the outer boundary and C is
a free parameter measuring the amplitude of the equatorial
symmetry breaking. The dimensionless equation system
includes the Navier-Stokes equation coupled to the induc-
tion equation and the heat equation. The system operates
under the conditions that both magnetic and velocity fields
are divergence-free. The dimensionless parameters are the
magnetic Prandtl number Pm = »/7, the Ekman number
Ek = v/(QD?), the Prandtl number Pr= v/k, and the
Rayleigh number Ra = agoATD/(v{)), where D =
(r, — r;) is the typical length scale. v, 7, k, @, and g,
are, respectively, the kinematic viscosity, the magnetic
diffusivity, the thermal diffusivity, the thermal expansion
coefficient, and the gravity at the outer sphere. Time is
expressed in viscous units. The radius ratio is fixed to
r;/r, = 0.3. The inner and outer spheres are electrical
insulators, and no-slip boundary conditions are used on
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these boundaries. In all the results reported in this Letter,
Ra = 120, Pm = 20, Pr= 1, and Ek = 6.e¢ — 3, using pa-
rameter values close to the ones used in similar previous
studies [10]. Although these parameters are far from those
of natural dynamos, they allow for long time integrations
and statistical analysis. The asymmetry parameter C is
varied between 0 and 0.25.

The top inset in Fig. 1 shows the solution obtained for
C = 0.1, when the symmetry breaking is relatively weak.
The color indicates the radial magnetic field B, at the core-
mantle boundary. Magnetic field lines are also shown. For
this value of C, the magnetic field is strongly dominated by
its axisymmetric component and the radial magnetic field
measured at the core-mantle boundary shows a strong
dipolar component. A weaker nonaxisymmetric compo-
nent, reminiscent from the m = 3 convection pattern, is
also visible. This magnetic structure is quite similar to the
one obtained in the absence of symmetry breaking. Despite
the heterogeneous temperature gradient, the magnetic en-
ergy remains largely symmetrical with respect to the equa-
tor, although slightly larger in the northern hemisphere.

For larger symmetry breaking, this dipole is replaced by
a totally different solution, hereafter referred to as solution
E. The bottom inset of Fig. 1 shows the magnetic structure
obtained for C = 0.2. The magnetic field is now dominated
by a nonaxisymmetric m = 1 component. At the outer
sphere, the field corresponds to an equatorial dipole, rotat-
ing around the z axis, that is slightly stronger in the north-
ern hemisphere. In the bulk of the flow, the equatorial
asymmetry of the field becomes more important, and this
new solution therefore takes the form of a hemispherical
magnetic field. (A similar behavior was reported in [12].)

e—e Solution D: go1

=-= Solution D: gIL'
+-+ Solution D: é)z
. |*— Solution E : go1 |

=-= Solution E: gll

. | . v/ \ |'/“ \§
0.1 0.15 02 025

Symmetry breaking parameter C

FIG. 1 (color online). Bifurcation of the coefficients g9, gl,
and g9 of the magnetic energy as a function of the symmetry
breaking parameter C. At small C, the solution corresponds to a
strong dipolar magnetic field (top inset). At large C, the solution
takes the form of an equatorial dipole at the outer surface
(bottom inset). For 0.1 < C < 0.2, there is a bistability between
the axial dipole solution D (black [dark gray] curves) and the
equatorial dipole solution E (red [light gray] curves). Turbulent
fluctuations connect the two solutions.

Although the thermal convection is made more vigorous in
the southern hemisphere by the heterogeneous heating, it is
interesting to note that the magnetic energy is surprisingly
localized in the northern hemisphere.

The generation of an equatorial dipole has been reported
in previous numerical studies. An equatorial dipole solu-
tion was described for the Rayleigh number very close to
the onset of convection [13], and a similar solution was
found in Ref. [14] for smaller shell thickness. In our case,
the breaking of the equatorial symmetry is directly respon-
sible for the generation of the equatorial dipole. For the
range of C we have studied, the total kinetic energy re-
mains relatively symmetrical with respect to the equatorial
plane (for C = 0.1, the equatorially antisymmetric flow
energy is only 10% of the symmetrical one). However,
this weak symmetry breaking is sufficient to strongly
modify the axisymmetric velocity, by generating a large
counter-rotating zonal flow. This toroidal 79 flow introdu-
ces a strong shear in the equatorial plane that tends to favor
the equatorial dipole at the expense of the axial one.

An interesting behavior occurs for intermediate values
of the symmetry breaking. When 0.1 < C < 0.2, a bista-
bility between the axial dipole D and the nonaxisymmetric
solution E is indeed obtained. Fig. 1 illustrates this bistable
regime by showing the bifurcation of both modes as a
function of C. The axial dipolar solution D is shown in
black (dark gray), and the solution E is dominated by m=1
magnetic modes in red (light gray). For each of these
solutions, we show the coefficients of the axial dipole g?,
the equatorial dipole g!, and the axial quadrupole g9,
where g7' means the poloidal component of the spherical
harmonic of order / and degree m. The dashed vertical lines
in Fig. 1 indicate the region for which the system is
bistable: both solutions can be obtained depending on the
initial conditions of the simulation. Note that for the solu-
tion E, dipolar and quadrupolar components possess the
same amplitude, in agreement with the hemispherical
structure of the magnetic field.

More interestingly, when the magnetic field is in this
bistable regime, for 0.1 < C < 0.2, the strong fluctuations
generated by the turbulence of the flow allow the system to
switch from one solution to the other. These transitions
between the axial and the equatorial dipole are shown by
the time series of the energy of the system in Fig. 2 (top):
the two states, although strongly fluctuating, are clearly
distinguishable by different, well-defined mean values for
the energies of axial (black [dark gray]) and equatorial (red
[light gray]) dipoles, and the system randomly switches
from one state to the other. In addition, Fig. 2 (bottom)
shows the time evolution of the g9 and the g} at the core-
mantle boundary. Since the phase space is symmetrical
with respect to the symmetry D — —D, we observe tran-
sitions from E to D as well as transitions from E to —D.
This bistability between the axial dipole and the equatorial
one therefore takes the form of chaotic reversals of the
polarity of the axial dipole. During a reversal, the dipolar
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FIG. 2 (color online). Time evolution of the magnetic field for
C = 0.13. The system chaotically jumps between the bistable
solutions E and *=D. Top panel: magnetic energy of the equa-
torial (red [light gray]) and axial (black [dark gray]) dipoles.
Bottom panel: magnetic energy at the core-mantle boundary of
the same system. The bistability with the equatorial dipole yields
chaotic polarity reversals of the axial dipolar magnetic field.

magnetic field does not vanish, but rather tilts at 90° and
rotates in the equatorial plane.

In Fig. 2, the dipolar magnetic field spends approxi-
mately as much time aligned with the axis of rotation
(solution D) as tilted at 90° (solution E). In fact, the total
time spent in one state or the other strongly depends on the
amplitude of the symmetry breaking. Figure 3 shows the
probability density function (PDF) of the dipolar compo-
nent g{ for different values of C. For C = 0.1 (black
curve), the equatorial dipole E is not excited, and only
the dipolar configuration D is accessible: the field does not
reverse, and the probability picks around D or —D, de-
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FIG. 3 (color online). Probability density function of the axial
dipolar component at the core-mantle boundary, for different
values of C. Depending on the value of C, the distribution can be
picked around a nonzero value of g? (small C, solution D) or
around zero (large C, solution E). In the bistable regime, the
distribution can be bimodal or trimodal.

pending on the initial conditions. When C is slightly in-
creased, the system starts to briefly explore the equatorial
dipolar state, in addition to D. The PDF is thus character-
ized by a nonzero value at gj = 0, corresponding to the
solution E. By symmetry, this solution is identically con-
nected to D or — D, allowing the axial dipole to reverse the
sign of its polarity. For 0.1 < C < 0.2, the probability
density function of the axial dipole is then trimodal.
Finally, when C is sufficiently large, only the equatorial
dipole solution E remains, and the probability of gV is
centered around zero.

During this transition from a nonreversing dipolar mag-
netic field to an oscillating m = 1 mode, one can also study
the direction of the dipole [Fig. 4]. The black curve shows
the probability P, of finding the system in the axial
configuration. (More precisely, Pp, is defined as the proba-
bility that sin(6p) < 0.25, where 6 is the dipole tilt
angle.) The transition is very sharp: the axial dipole proba-
bility drops abruptly from one to zero for C > 0.1. On the
contrary, the probability of finding the equatorial dipole
(sin(@p) > 0.75) rapidly increases from zero to one when
C is increased. The red (light gray) curve shows the re-
versal frequency of the dipolar solution D versus the
symmetry breaking C. When C is increased, the connection
with the attractor £ corresponding to the equatorial solu-
tion is larger. Consequently, the connections between the
two opposite states D and —D are more frequent, and the
number of reversals increases.

For C ~ 0.1, at the very beginning of this transition, the
system spends a long time in the solution D. It still explores
the equatorial configuration, but only for a very brief

0.8 150 r” m i _
0.61-|2 1% -
jo
[a} 50 UH‘
|
04F bkl st i

1000 2000 3000 4000

02 Time |
e Axial dipole probability
e Reversal frequency (x100)
or L L | 1 1 L | L | 1 | L |
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Symmetry breaking parameter C

FIG. 4 (color online). Black (dark gray): probability for find-
ing the axial dipolar solution, as a function of C. The transition
from an axial to an equatorial dipole field is very sharp. Red
(light gray): reversal frequency of the axial dipole. As C in-
creases, the basin of attraction of the equatorial dipole extends,
allowing for more and more reversals of the axial dipole. Inset:
time evolution of the dipole tilt 8, for C = 0.12: the system
spends a very weak portion of time in the nonaxisymmetric state,
and Earth-like reversals can be obtained.
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moment during reversals or excursions. In this case, the
distribution tends to be bimodal [red curve in Fig. 3],
despite the fact that three stable states are involved in the
reversal. For instance, the inset of Fig. 4 shows the time
evolution of the dipole tilt for C = 0.12 and illustrates how
a weak equatorial symmetry breaking can produce ‘“‘Earth-
like” reversals, with a bimodal distribution and a dipole tilt
rapidly switching from 0° to 180°.

It is possible to give a naive picture of this mechanism
using the analogy with a heavily damped particle in a
tristable potential. (A different but close mechanism is
described in [15] by picturing the geodynamo as a bistable
oscillator.) Most of the time, the system is trapped inside
one of the wells (corresponding to D or —D). Due to
turbulent fluctuations, the system eventually escapes one
of these stable minima to reach the opposite one. Between
these two opposite states, there is a third stable potential
well, the equatorial dipole E, which creates a connection
between D and —D. As C is increased, an exchange of
stability takes place from the potential wells =D toward E,
and reversals become more frequent. (For C > 0.2, when
only FE persists, the axial dipole simply fluctuates around
zero.) Simply stated, reversals of the axial dipolar field thus
rely on the presence of the equatorial dipole, which is used
as a transitional field during each reversal.

Interestingly, this scenario shares strong similarities with
the mechanism for reversals observed in classical geody-
namo simulations: when a homogeneous heat flux is used,
reversals of the dipole field are only observed within a
particular transition region of the parameter space, between
aregime in which the field is strongly dipolar and a strongly
fluctuating regime characterized by a multipolar magnetic
structure [16,17]. In this case, reversals also result from a
bistability between the dipole and another mode (the multi-
polar mode), similarly to what we described with the equa-
torial dipole. As in our case, Earth-like reversals are
obtained only if the system is chosen inside the transition
region, but only at the very beginning of this transition, close
to the boundary with the dipolar regime.

Although based on a different mechanism, the behavior
of the magnetic field also has interesting similarities with
the model proposed in Ref. [6]: reversals are triggered by
the equatorial symmetry breaking, and result from the
interaction between the so-called dipole and quadrupole
families of the magnetic field. The intriguing generation of
a strongly hemispherical solution at very small symmetry
breaking is also predicted by this model [18]. In fact,
depending on the parameters, this model can lead to a
hemispherical solution like the one reported in the present
Letter, or yield polarity reversals through a saddle-node
bifurcation. However, numerical simulations have shown
that this latter mechanism is rather selected at sufficiently
small Pm [19], whereas the simulations reported here are
carried at Pm = 20. Although small Pm simulations are
numerically challenging, it would be interesting to study
how the mechanism described in this letter is modified as
Pm is decreased toward more realistic values.

To summarize, we have shown that an equatorial dipole
solution can be generated in geodynamo simulations when
the equatorial symmetry of the flow is broken by a hetero-
geneous heating at the core-mantle boundary. Moreover,
for weak symmetry breaking, a bistable regime between
this equatorial dipole and the axial dipole is obtained.
Finally, this bistability leads to an interesting scenario for
geomagnetic reversals: the symmetry breaking, by stabi-
lizing the equatorial dipole, provides the system with a new
solution for connecting the two axial dipole polarities, and
sufficiently strong turbulent fluctuations trigger chaotic
reversals of the field. During a reversal, the transitional
field is strongly hemispherical in the bulk of the flow and
corresponds to an equatorial dipole field at the core-mantle
boundary, rotating around the z axis. In agreement with
paleomagnetic observations, the reversal frequency is di-
rectly related to the equatorial asymmetry of the flow.
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